Adaptive Convergence of Methylomes Reveals Epigenetic Drivers and Boosters of Repeated Relapses in Patient-matched Childhood Ependymomas and Identifies Targets for Anti-Recurrence Therapies

Author(s):  
Sibo Zhao ◽  
Jia Li ◽  
Huiyuan Zhang ◽  
Lin Qi ◽  
Yuchen Du ◽  
...  

Abstract Ependymoma (EPN) is the third most common brain tumor in children and frequently recurs. Here, we report an integrated longitudinal analysis of epigenetic, genetic and tumorigenic changes in 30 patient-matched repeated relapses obtained from 10 pediatric patients to understand the mechanism of recurrences. Genome-wide DNA methylation analysis revealed stable molecular subtypes and convergent epigenetic reprogramming during serial relapses of the 5 RELA and 5 PFA EPNs that paralleled with elevated patient-derived orthotopic xenograft (PDOX) (13/27) formation in the late relapses. Differentially methylated CpGs (DMCs) preexisted in the primary tumors and persisted in the relapses (driver DMCs) were detected, ranging from 51 hypo-methylated in RELA to 148 hyper-methylated DMCs in PFA tumors; while newly acquired DMCs sustained in all the relapses but was absent in the primary tumors (booster DMCs) ranged from 38- 323 hyper-methylated DMCs in RELA and PFA EPNs, respectively. Integrated analysis of these DMC associated DNA methylation regions (DMRs) and RNAseq in both patient and PDOX tumors identified a small fraction of the differentially expressed genes (4.6±4.4% in RELA and 4.5±1.1% in PFA) as regulated by driver DMRs (e.g., up-regulated CACNA1H, SLC12A7, RARA in RELA and HSPB8, GMPR, ITGB4 in PFA) and booster DMRs (including the sole upregulated PLEKHG1 in RELA and NOTCH, EPHA2, SUFU, FOXJ1 in PFA tumors). Most these genes were novel to EPN relapses. Seven DMCs in RELA and 22 in PFA tumors were also identified as potential relapse predictors. Finally, integrating DNA methylation with histone modification identified LSD1 as a relapse driver gene. Combined treatment of a novel inhibitor SYC-836 with radiation significantly prolonged survival times in two PDOX models of recurrent PFA. This high-resolution epigenetic and genetic roadmap of EPN relapse and our 13 new PDOX models should significantly facilitate biological and preclinical studies of pediatric EPN recurrences.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiao-Long Yuan ◽  
Zhe Zhang ◽  
Bin Li ◽  
Ning Gao ◽  
Hao Zhang ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi5-vi5
Author(s):  
Wies Vallentgoed ◽  
Anneke Niers ◽  
Karin van Garderen ◽  
Martin van den Bent ◽  
Kaspar Draaisma ◽  
...  

Abstract The GLASS-NL consortium, was initiated to gain insight into the molecular mechanisms underlying glioma evolution and to identify markers of progression in IDH-mutant astrocytomas. Here, we present the first results of genome-wide DNA-methylation profiling of GLASS-NL samples. 110 adult patients were identified with an IDH-mutant astrocytoma at first diagnosis. All patients underwent a surgical resection of the tumor at least twice, separated by at least 6 months (median 40.9 months (IQR: 24.0, 64.7). In 37% and 18% of the cases, patients were treated with radiotherapy or chemotherapy respectively, before surgical resection of the recurrent tumor. DNA-methylation profiling was done on 235 samples from 103 patients (102 1st, 101 2nd, 29 3rd, and 3 4th resection). Copy number variations were also extracted from these data. Methylation classes were determined according to Capper et al. Overall survival (OS) was measured from date of first surgery. Of all primary tumors, the methylation-classifier assigned 85 (87%) to the low grade subclass and 10 (10%) to the high grade subclass. The relative proportion of high grade tumors increased ~three-fold at tumor recurrence (32/101, 32%) and even further in the second recurrence (15/29, 52%). Methylation classes were prognostic, both in primary and recurrent tumors. The overall DNA-methylation levels of recurrent samples was lower than that of primary samples. This difference is explained by the increased number of high grade samples at recurrence, since near identical DNA-methylation levels were observed in samples that remained low grade. In an unsupervised analysis, DNA-methylation data derived from primary and first recurrence samples of individual patients mostly (79%) cluster together. Recurrent samples that do not cluster with their primary tumor, form a separate group with relatively low genome-wide DNA-methylation. Our data demonstrate that methylation profiling identifies a shift towards a higher grade at tumor progression coinciding with reduced genome-wide DNA-methylation levels.


2020 ◽  
Vol 11 ◽  
Author(s):  
Liang Liu ◽  
Tao Luo ◽  
Huixi Dong ◽  
Chenxi Zhang ◽  
Tieqiao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document