scholarly journals Effects of Intraspecific Density on Garlic Mustard (Alliaria Petiolata) Sinigrin Concentration

Author(s):  
Mercedes Harris ◽  
Elsa Cousins ◽  
Kristina Stinson

Abstract The production of secondary defense chemicals in plants represents a trade-off between defense and the primary functions of growth and reproduction, but the relative allocation to growth versus defense varies across species, types of defenses, ontogeny, and environment. Alliaria petiolata (garlic mustard) is a brassica that produces glucosinolates, a class of constituent secondary metabolites that defend against herbivores and pathogens. Sinigrin, a hydrolyzed product of glucosinolate present in garlic mustard, may aid in its success as an invasive species by disrupting native plant–mycorrhizae mutualisms and decreasing forest species diversity in North America. Here, we measured sinigrin concentration in garlic mustard populations of different field densities and in greenhouse experiments to evaluate the relationship between sinigrin concentration and growth in response to density and varying environmental conditions. We found clear evidence for growth vs. defense tradeoffs in both experimental and field settings, as well as higher levels of defense in more densely growing, smaller individual plants. However, sinigrin levels and tradeoffs were not explained by soil fertility or light, allowing us to conclude that sinigrin expression is not controlled by limitations in the measured abiotic factors. Our findings suggest sinigrin leaf concentration increases at high densities despite the pressures of intraspecific competition that demand allocation to growth.

2009 ◽  
Vol 2 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Don Cipollini ◽  
Stephanie Enright

AbstractWhen exposed to native or introduced herbivores and pathogens, invasive plants may become weaker competitors with more benign impacts on individual plants and plant communities. In a greenhouse pot study, we tested whether the presence of powdery mildew disease caused by Erysiphe cruciferarum could alter the competitive impact of garlic mustard on Impatiens pallida, a North American native understory plant. Target I. pallida plants were grown alone or with one, two, or three garlic mustard neighbors. Half of the pots exposed to garlic mustard were inoculated with conidia of E. cruciferarum. Competition with garlic mustard moderately affected aboveground growth of I. pallida, particularly at high garlic mustard density, but it strongly reduced seed output across all densities. In contrast, inoculation of garlic mustard plants with E. cruciferarum completely abolished their competitive impact on seed output of I. pallida across all densities, independent of effects on aboveground growth of target plants. This effect was likely due to alteration in the ability of garlic mustard to compete for belowground resources. Even without killing garlic mustard, these results indicate that the presence of powdery mildew disease in the field will likely dampen the competitive impact of garlic mustard on individual plants and plant communities. Escape from such attackers has likely contributed to the invasiveness and impacts of garlic mustard in North America.


2012 ◽  
Vol 5 (2) ◽  
pp. 148-154 ◽  
Author(s):  
Patricia M. Quackenbush ◽  
RaeLynn A. Butler ◽  
Nancy C. Emery ◽  
Michael A. Jenkins ◽  
Eileen J. Kladivko ◽  
...  

AbstractTemperate and boreal forests in Canada and the northeastern United States have been invaded by several exotic species, including European earthworms (family Lumbricidae) and garlic mustard. Earthworms and garlic mustard co-occur and are both known to adversely impact some native plant species. However, relatively little is known about potential interactions between these two invaders. In a series of growth chamber experiments, we determined the palatability of garlic mustard and six native herbaceous forest species (shooting star, columbine, wild geranium, sweet cicely, butterfly milkweed, and yellow jewelweed) to the common nightcrawler. We also assessed the ability of the common nightcrawler to bury and digest garlic mustard and wild geranium. When offered seeds from garlic mustard and a native plant species, the earthworms ingested more garlic mustard seeds than seeds from four of the six native species. In a mesocosm experiment, the common nightcrawlers apparently digested 72 and 27% of garlic mustard and wild geranium seeds, respectively, that were placed on the soil surface. No seeds were observed on the soil surface at the end of the experiment but the majority of recovered seeds for both species were found within the top 10 cm (3.94 in). More seeds were recovered in 0- to 10-cm and 31- to 40-cm sections for wild geranium than for garlic mustard. No difference in seed recovery was detected at the other depths. Garlic mustard seed is readily consumed by common nightcrawlers and appears to be preferred over some native plant species suggesting that common nightcrawlers may reduce the size of the garlic mustard seed bank.


2011 ◽  
Vol 4 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Thomas P. Rooney ◽  
David A. Rogers

AbstractPreinvasion baseline data on entire communities are absent for most taxa in most places, and this limits our ability to connect long-term ecological changes to particular invasive species or invasion events. We obtained data on forest understory composition from 94 stands in the 1950s and again the 2000s. We recorded within-stand frequency of occurrence for garlic mustard, European buckthorn, and Bell's honeysuckle and identified changes in native plant species density in 20, 1-m2 quadrats in invaded and noninvaded stands. All three invasive species were absent from all study sites 50 yr ago, yet at least one was present in 77.7% of the stands by the 2000s. All three species were present in 14.9% of the stands. Garlic mustard and European buckthorn were found at 47.9% of resurveyed sites, and Bell's honeysuckle was found in 40.4% of resurveyed sites. Native understory plant species density declined an average of 23.1% during the past 50 yr. Declines were not significantly different in stands with or without invasive plants. The absence of a measurable effect by invasive plant presence or frequency could be due to invasive plants being too few to have a measurable effect at the plot scale, species density being an insensitive response variable, time lags between invasions and effects, or regional factors like development pressure and fire suppression driving density declines in both invasives and native species.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 607 ◽  
Author(s):  
Graham Frank ◽  
Michael Saunders ◽  
Michael Jenkins

Invasive shrubs in forest understories threaten biodiversity and forest regeneration in the eastern United States. Controlling these extensive monotypic shrub thickets is a protracted process that slows the restoration of degraded forest land. Invasive shrub removal can be accelerated by using forestry mulching heads, but evidence from the western United States indicates that mulching heads can promote exotic species establishment and mulch deposition can reduce native plant species abundance. We compared the effectiveness of the mulching head and the “cut-stump” method for controlling the invasive shrub Amur honeysuckle (Lonicera maackii), as well as their impacts on native plant community recovery, in mixed-hardwood forests of Indiana. After two growing seasons, mulching head treatment resulted in greater L. maackii regrowth and regeneration. The recovery of native plant abundance and diversity following shrub removal did not differ between the two methods. However, mulch deposition was associated with increased abundance of garlic mustard (Alliaria petiolata), an invasive forb. Increasing mulching head treatment depth reduced L. maackii regrowth, but additional study is needed to determine how it affects plant community responses. The mulching head is a promising technique for invasive shrub control and investigating tradeoffs between reducing landscape-scale propagule pressure and increased local establishment will further inform its utility.


1991 ◽  
Vol 334 (1270) ◽  
pp. 161-170 ◽  

Many studies have examined the proportion of time that primates devote to feeding on various types of food, but relatively little is known about the intake rates associated with each food. However, the nutritional consequences of foraging can only be interpreted by comparing nutrient intakes with estimated nutrient requirements. The energy available to primates from ingested foods will depend both on the composition of the food and the extent to which various constituents, including fibre fractions, are digested. Both human and non-human primates have relatively low requirements for protein as a consequence of slow growth rates, small milk yields and relatively dilute milk. Because the nutrient demands of growth and reproduction are spread out over time, it appears that primates do not need to seek out foods of particularly high nutrient density, except perhaps during weaning. Although food selection in some species of primates appears to be correlated with the protein concentration of foods, it is unlikely that high dietary protein levels are required, at least when foods of balanced amino acid composition (such as leaves) are included in the diet.


Author(s):  
Tian Wu ◽  
Danyan Hu ◽  
Qingfen Wang

Abstract Background Noni (Morinda citrifolia Linn.) is a tropical tree that bears climacteric fruit. Previous observations and research have shown that the second day (2 d) after harvest is the most important demarcation point when the fruit has the same appearance as the freshly picked fruit (0 d); however, they are beginning to become water spot appearance. We performed a conjoint analysis of metabolome and transcriptome data for noni fruit of 0 d and 2 d to reveal what happened to the fruit at the molecular level. Genes and metabolites were annotated to KEGG pathways and the co-annotated KEGG pathways were used as a statistical analysis. Results We found 25 pathways that were significantly altered at both metabolic and transcriptional levels, including a total of 285 differentially expressed genes (DEGs) and 11 differential metabolites through an integrative analysis of transcriptomics and metabolomics. The energy metabolism and pathways originating from phenylalanine were disturbed the most. The upregulated resistance metabolites and genes implied the increase of resistance and energy consumption in the postharvest noni fruit. Most genes involved in glycolysis were downregulated, further limiting the available energy. This lack of energy led noni fruit to water spot appearance, a prelude to softening. The metabolites and genes related to the resistance and energy interacted and restricted each other to keep noni fruit seemingly hard within two days after harvest, but actually the softening was already unstoppable. Conclusions This study provides a new insight into the relationship between the metabolites and genes of noni fruit, as well as a foundation for further clarification of the post-ripening mechanism in noni fruit.


2021 ◽  
pp. 1-17
Author(s):  
Leo Roth ◽  
José Luiz C. S. Dias ◽  
Christopher Evans ◽  
Kevin Rohling ◽  
Mark Renz

Garlic mustard [Alliaria petiolata (M. Bieb.) Cavara & Grande] is a biennial invasive plant commonly found in the northeastern and midwestern United States. Although it is not recommended to apply herbicides after flowering, land managers frequently desire to conduct management during this timing. We applied glyphosate and triclopyr (3% v/v and 1% v/v using 31.8% and 39.8% acid equivalent formulations, respectively) postemergence to established, second-year A. petiolata populations at three locations when petals were dehiscing, and evaluated control, seed production and seed viability. Postemergence glyphosate applications at this timing provided 100% control of A. petiolata by 4 weeks after treatment at all locations whereas triclopyr efficacy was variable, providing 38-62% control. Seed production was only reduced at one location, with similar results regardless of treatment. Percent seed viability was also reduced, and when combined with reductions in seed production, we found a 71-99% reduction in number of viable seed produced plant-1 regardless of treatment. While applications did not eliminate viable seed production, our findings indicate that glyphosate and triclopyr applied while petals were dehiscing is a viable alternative to cutting or hand-pulling at this timing as it substantially decreased viable A. petiolata seed production. Management Implications Postemergence glyphosate and triclopyr applications in the early spring to rosettes are standard treatments used to manage A. petiolata. However, weather and other priorities limit the window for management, forcing field practitioners to utilize more labor-intensive methods such as hand-pulling. It is not known how late in the development of A. petiolata these herbicides can be applied to prevent viable seed production. Since prevention of soil seedbank replenishment is a key management factor for effective long-term control of biennial invasive species, we hypothesized late spring foliar herbicide applications to second year A. petiolata plants when flower petals were dehiscing could be an effective management tool if seed production or viability is eliminated. Our study indicated that glyphosate applications at this timing provided 100% control of A. petiolata plants by 4 weeks after treatment at all locations, whereas triclopyr efficacy was inconsistent. Although both glyphosate and triclopyr decreased viable seed production to nearly zero at one of our three study locations, the same treatments produced significant amounts of viable seed at the other two locations. Our findings suggest late spring glyphosate and triclopyr applications should not be recommended over early spring applications to rosettes for A. petiolata management, as our late spring application timing did not prevent viable seed production, and may require multiple years of implementation to eradicate populations. Nonetheless, this application timing holds value in areas devoid of desirable understory vegetation compared to no management practices or mechanical management options including hand-pulling when fruit are present, as overall viable seed production was reduced to similar levels as these treatments.


BioScience ◽  
2008 ◽  
Vol 58 (5) ◽  
pp. 426-436 ◽  
Author(s):  
Vikki L. Rodgers ◽  
Kristina A. Stinson ◽  
Adrien C. Finzi

1978 ◽  
Vol 56 (13) ◽  
pp. 1505-1509 ◽  
Author(s):  
Stephen A. Whipple

Species of buried, germinating seeds and species occurring in the vegetation are compared for two Colorado subalpine forest stands, one dry and one mesic, both over 325 years old. The total numbers of seeds found were small and the correspondence with species in the vegetation was poor. This is consistent with reports from other old-growth forests and may be accounted for by a combination of low seed input and rapid loss of viable seeds from the soil reservoir for old-growth forest species.


Sign in / Sign up

Export Citation Format

Share Document