scholarly journals A Study of the Interaction of Ixabepilone As Anticancer Drug With Acetoxymercuric Fluorescein Reagent by Fluorescence Quenching Approach: A Validated Method

Author(s):  
Hesham Salem ◽  
Amany abdelaziz ◽  
Aliaa Gamal ◽  
Ramy El Sabaa

Abstract A spectrofluorimetric approach has been developed and validated for determination of sulfur-containing drug; ixabepilone in raw powder, vials and human plasma. This approach studies the quenching effect of IXA on the fluorescence intensity of acetoxymercuric fluorescein (AMF) reagent at λem of 530 nm and λex of 500 nm. All the parameters that can affect the reaction as pH, AMF solution concentration, temperature, time and solvents were studied and optimized. The linearity range of the studied approach was 20-100 ng mL-1 with correlation coefficient of (r = 0.9998). The proposed approach was validated and approved regarding to ICH guidelines in terms of accuracy, precision, linearity, LOD and LOQ, with mean percentage recovery of 99.79 and RSE% of 1.64. The previously obtained resultes were already statistically compared with that of established reported methods indicating no significant differences in accuracy and precision. Finally, the proposed approach is easy, sensitive, and inexpensive so it is suitable for routine determination of IXA in raw powder, vials and human plasma with no need for any prior separation or sample extraction.

Author(s):  
Hesham Salem ◽  
Amany Abdelaziz ◽  
Aliaa Gamal ◽  
Ramy El Sabaa

A dependable, sensitive, basic and cheap spectrofluorimetric approach has been created for test of sulfur-containing drug; ixabepilone in bulk powder, vials and human plasma. The approach depends on the quenching effect of ixabepilone on the fluorescence intensity of acetoxymercuric fluorescene (AMF) reagent at λem of 530 nm and λex of 500 nm. Parameters which will control the reaction such as pH, AMF solution concentration, temperature, time and solvents were examined and optimized. According to the optimized conditions, the proposed approach was practiced over the concentration area of 20-100 ng mL-1 with adequate linearity (r = 0.9998). The developed approach was approved confirming to ICH rules in terms of accuracy, precision, linearity, LOD and LOQ. The proposed approach was practiced to analyze ixabepilone in Ixempra® vials with satisfactory recovery % of 99.89 and RSE% of 1.24. The results achieved were compared to those achieved by an already reported HPLC approach.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 349-354
Author(s):  
BALU KHANDARE ◽  
Atish C. Musle ◽  
Sanket S. Arole ◽  
Pravin V. Popalghat

Abstract: A simple, precise and economical UV-spectrophotometric method has been developed for the estimation of Olmutinib from bulk. Two methods were developed First method (A) applied was area under curve (AUC) in which the area was integrated in wavelength from 262-272nm. Second method (B) was first order derivative spectrometric method. In this method absorbance at λmin=256.57nm, λmax=282.83nm and zero cross=267.68nm was measured. Calibration curves were plotted for the method by using instrumental response at selected wavelength and concentration of analyte in the solution. In both the methods, linearity was observed in the concentration range of 2-12µg/ml at the λmax=267.68nm. Accuracy and precision studies were carried out and results were satisfactorily obtained. The drug at each of the 80 %, 100 % and 120 % levels showed good recoveries that is in the range of 98.00 to 99.00% for both methods, hence it could be said that the method was accurate. Limit of detection (LOD) and limit of quantitation (LOQ) were determined for the method. The method was validated as per International Conference on Harmonization. All validation parameters were within the acceptable limit. The developed method was successfully applied to estimate the amount of Olmutinib in pharmaceutical formulation.


2016 ◽  
Vol 14 (1) ◽  
pp. 258-266 ◽  
Author(s):  
Sayed M Derayea ◽  
Mahmoud A Omar ◽  
Mohamed Aboel-Kasem Abdel-Lateef ◽  
Ahmed I. Hassan

AbstractA simple, rapid, sensitive and economic spectrofluorimetric method has been developed and validated for determination of some β-adrenergic blocking agents namely; betaxolol hydrochloride (BTX), carvedilol (CAR), labetalol hydrochloride (LBT), nebivolol hydrochloride (NEB) and propranolol hydrochloride (PRO). The method is based on the quenching effect of the cited drugs on the fluorescence intensity of eosin Y at pH 3.4 (acetate buffer). The fluorescence quenching is due to the formation of an ion-pair complex and was measured without extraction at 545 nm (λex. 301.5 nm). The factors affecting the formation of the ion-pair complex were carefully studied and optimized. Under the optimal conditions, the linear ranges for the relationship between the fluorescence quenching value and the concentration of the investigated drugs were 100-2500, 150-2500 and 50-2250 ng mL-1 for (BTX, CAR), (LBT, NEB) and (PRO) respectively. The method was validated according to ICH guidelines and was applied for determination of the cited drugs in pharmaceutical dosage forms with excellent recoveries. In addition, content uniformity testing of some commercial dosage forms was checked by the proposed method.


2020 ◽  
Vol 58 (5) ◽  
pp. 411-417
Author(s):  
Maimana A Magdy ◽  
Rehab M Abdelfatah

Abstract A binary mixture of Silymarin (SR) and Vitamin E (VE) acetate, of an antioxidant and a hepatoprotective effect, has been analyzed using a sensitive, selective and economic high performance thin layer chromatographic (HPTLC) method in their pure forms, pharmaceutical formulation and spiked human plasma. SR and VE were separated on 60F254 silica gel plates using hexane:acetone:formic acid (7:3:0.15, v/v/v) as a developing system with UV detection at 215 nm. The method was evaluated for linearity, accuracy, precision, selectivity, limit of detection (LOD) and limit of quantification (LOQ). SR and VE were detected in the linear range of 0.2–2.5 and 0.2–4.5 μg/band, respectively. Method validation was done as per ICH guidelines and acceptable results of accuracy of 99.86 ± 1.190 and 100.22 ± 1.609 for SR and VE, respectively were obtained. The method has been successfully applied for determination of the studied drugs in their pharmaceutical formulation without any interference from excipients, and in spiked plasma samples. Results obtained by the developed HPTLC-densitometric method were statistically compared to those obtained by the reported HPLC methods and no significant difference was found between them.


Bioanalysis ◽  
2019 ◽  
Vol 11 (21) ◽  
pp. 1917-1925 ◽  
Author(s):  
Yuhuan Ji ◽  
Yijiang Liu ◽  
Wanhong Xia ◽  
Alexander Behling ◽  
Min Meng ◽  
...  

Aim: The importance of the length and/or structure of fluorescently labeled PNA (peptide nucleic acid) probes for quantitative determination of oligodeoxynucleotides (ODNs) is demonstrated in human plasma using hybridization-based LC-fluorescence assays. The length of the PNA probes impacts the peak shape and chromatographic separation of the resulting PNA/ODN hybridization complexes and affects assay sensitivity, dynamic range and carryover. Methods: For quantitative determination of an 18-mer phosphodiester ODN (DNL1818) in human plasma, an assay utilizing an Atto dye-labeled 12-mer PNA probe provided a linear quantitation range of 0.1–50 ng/ml with excellent accuracy and precision (within -5.3–7.73%). Conclusion: This method provides a convenient method for sensitive and specific quantification of ODNs in biological matrix with limited sample volume and no special extraction.


Author(s):  
IRYNA DRAPAK ◽  
BORYS ZIMENKOVSKY ◽  
LINA PEREKHODA ◽  
SERGIY KOVALENKO ◽  
Liliya Logoyda

Objective: The main purpose of this study was to develop a simple, precise, rapid and accurate method for the quantification of cardiazol in human plasma. Methods: Chromatography was achieved on Discovery C18, 50 × 2.1 mm, 5 μm column. Samples were chromatographed in a gradient mode (eluent A (acetonitrile-water–formic acid, 5: 95: 0.1 v/v), eluent B (acetonitrile–formic acid, 100: 0.1 v/v)). The initial content of the eluent B of 8%, which increases linearly to 1.0 min to 100%, is maintained up to 1.5 min and returned to the original 8% to 1.51 min. The mobile phase was delivered at a flow rate of 0.400 ml/min into the mass spectrometer ESI chamber. The sample volume was 300 μl. Results: The total chromatographic run time was 2.5 min and the elution of cardiazol and IS (difenoconazole) occurred at ~2.15 and 1.98 min, respectively. A linear response function was established at 1-100 ng/ml for cardiazol and difenoconazole in human plasma. The % mean recovery for cardiazol in LQC, MQC and HQC was 102.8 %, 100.3 % and 95.9 %. The lowest concentration with the RSD<20% was taken as LLOQ and was found to be 1.10 ng/ml for cardiazol. The % accuracy of LLOQ samples prepared with the different biological matrix lots was found 109.7 %, which were found within the range of 80.00-120.00 % for the seven different plasma lots. % CV for LLOQ samples was observed as 11.9 %, which are within 20.00% of the acceptance criteria. The within-run coefficients of variation ranged between 0.311 % and 0.601 % for cardiazol. The within-run percentages of nominal concentrations ranged between 99.80 % and 100.41 % for cardiazol. The between-run coefficients of variation ranged between 0.332 % and 0.615 % for cardiazol. The between-run percentages of nominal concentrations ranged between 98.18 % and 101.21 % for cardiazol. Conclusion: A rapid method was developed for simultaneous determination of cardiazol in human plasma. The method was strictly validated according to the ICH guidelines. Acquired results demonstrate that the proposed strategy can be effortlessly and advantageously applied for routine examination of cardiazol in human plasma.


Author(s):  
Yufeng Ni ◽  
Yujia Zhang ◽  
Chong Zou ◽  
Li Ding

A rapid and reproducible liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine sacubitril, valsartan and a metabolite of sacubitril (LBQ657) in human plasma using sacubitril-d4 and valsartan-d3 as the internal standards. Following protein precipitation, the analytes were operated on an Ultimate® XB-C18 column (2.1 × 50 mm, 3.5 μm, Welch) with a gradient elution with acetonitrile, and 5 mM ammonium acetate and 0.1% formic acid in water as the mobile phase. The detection was performed on a Triple Quad™ 4000 mass spectrometer coupled with an electrospray ionization source (ESI) under positive-ion multiple reaction monitoring mode. The linearities are 2.00-4000, 5.00-10000 and 5.00-10000 ng mL-1 for sacubitril, valsartan and LBQ657, respectively. The accuracy and precision of intra- and inter-day, dilution accuracy, recovery and stability of the method were all within the acceptable limits and no matrix effect or carryover was observed. The suitability of the method was successfully demonstrated in terms of the quantification of sacubitril, valsartan and LBQ657 in plasma samples collected from healthy Chinese volunteers in a clinical trial.


Luminescence ◽  
2014 ◽  
Vol 30 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Ya-Hong Chen ◽  
Ya-Nan Zhang ◽  
Feng-Shou Tian

Pharmacia ◽  
2020 ◽  
Vol 67 (2) ◽  
pp. 39-48
Author(s):  
Mariana Horyn ◽  
Liliya Logoyda

Aim.The main purpose of this study was to develop a simple, precise, rapid and accurate method for the quantification of metoprolol and meldonium in human plasma. Materials and methods. The resolution of peaks of metoprolol was best achieved with Discovery C18, 50 × 2.1 mm, 5 μm column and meldonium - ZORBAX HILIC Plus, 50 × 2.1 mm, 3.5 μm column. Samples of metoprolol were chromatographed in a gradient mode (eluent A (acetonitrile – water – formic acid, 5 : 95 : 0.1 v/v), eluent B (acetonitrile – formic acid, 100 : 0.1 v/v)). The initial content of the eluent B is 0%, which increases linearly by 1.0 min to 100% and to 1.11 min returns to the initial 0%. The mobile phase was delivered at a flow rate of 0.400 mL/min into the mass spectrometer ESI chamber. The injection volume was 5μl. Samples of meldonium were chromatographed in a isocratic using mobile phase water – acetonitrile – ammonium formate buffer 200 мМ, 20 : 75 : 5 v/v). Results.The total chromatographic run time was 2.0 minutes and the elution of metoprolol, meldonium and IS occurred at ~1.39 and 1.18 minutes, respectively.A linear response function was established at 2 - 200 ng/mL for metoprolol and 50 -5000 ng/mL for meldonium in human plasma. The% mean recovery for metoprolol in LQC, MQC and HQC was 99.0%, 107.5% and 96.8%, for meldonium in LQC, MQC and HQC was 94.1%, 100.2% and 93.1% respectively. The lowest concentration with the RSD &lt;20% was taken as LLOQ and was found to be 2.31 ng/mL for metoprolol, 47.70 ng/mL for meldonium. The % accuracy of LLOQ samples prepared with the different biological matrix lots were found 115.4% for metoprolol and 95.5% for meldonium, which were found within the range of 80.00–120.00% for the seven different plasma lots. % CV for LLOQ samples was observed as 12.8% and 7.7% respectively, which are within 20.00% of the acceptance criteria. Conclusion.A rapid method was developed for simultaneous determination of metoprolol and meldonium in human plasma. The method was strictly validated according to the ICH guidelines. Acquired results demonstrate that proposed strategy can be effortlessly and advantageously applied for routine examination of metoprolol and meldonium in human plasma.


Sign in / Sign up

Export Citation Format

Share Document