scholarly journals PAK4 Suppresses Motor Neuron Degeneration in hSOD1G93A -Linked ALS Cell and Rat Models

2020 ◽  
Author(s):  
Chaohua Cong ◽  
Weiwei Liang ◽  
Chunting Zhang ◽  
Ying Wang ◽  
Yueqing Yang ◽  
...  

Abstract Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. The exact mechanisms underlying motor neuron death in ALS are still not fully understood, but a growing body of evidence indicates that inflammatory could accentuate disease severity and accelerate disease progression. Currently, no neuroprotective strategies have effectively prevented the progression of this disease.Methods: IF, western blotting and RT-PCR were used to analyze the expression of PAK4 in vitro and in vivo models of ALS. We examined PAK4 function in ALS and the underlying mechanism by cell transfection, intraspinally injection of LV-PAK4 in hSOD1G93A mice, flow cytometry, TUNEL staining, IF and western blotting.Results: Here, we observed that the expression and activity of PAK4 significantly decreased in hSOD1G93A-related cell and mouse models of ALS. In hSOD1G93A mice,the expression of PAK4 began to decrease at early-symptom stages of the disease. PAK4 silencing increased degeneration of motor neurons (NSC34 cells) and suppressed the CREB pathway. Overexpression of PAK4 protected motor neurons from hSOD1G93A-induced degeneration by increasing the levels and transcriptional activity of CREB. The neuroprotective effect of PAK4 was markedly inhibited by compound 3i, a specific CREB inhibitor. In hSOD1G93A-linked cell and mice, the CREB pathway, as the downstream target of decreased PAK4, was inhibited, and cell apoptosis increased. We also found that the expression of PAK4 was negatively regulated by miR-9-5p, and the miR-9-5p levels were upregulated in ALS. In vivo experiments revealed that PAK4 overexpression in the spinal neurons of hSOD1G93A mice suppressed motor neuron degeneration, prolonged survival and promoted the CREB pathway. Conclusion: These results indicate that PAK4 plays a protective role for motor neurons by targeting CREB, suggesting it may be a useful therapeutic target in ALS.

2016 ◽  
Vol 7 (7) ◽  
pp. 886-896 ◽  
Author(s):  
Luz Diana Santa-Cruz ◽  
Sergio Guerrero-Castillo ◽  
Salvador Uribe-Carvajal ◽  
Ricardo Tapia

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Éric Martineau ◽  
Adriana Di Polo ◽  
Christine Vande Velde ◽  
Richard Robitaille

Despite being an early event in ALS, it remains unclear whether the denervation of neuromuscular junctions (NMJ) is simply the first manifestation of a globally degenerating motor neuron. Using in vivo imaging of single axons and their NMJs over a three-month period, we identify that single motor-units are dismantled asynchronously in SOD1G37R mice. We reveal that weeks prior to complete axonal degeneration, the dismantling of axonal branches is accompanied by contemporaneous new axonal sprouting resulting in synapse formation onto nearby NMJs. Denervation events tend to propagate from the first lost NMJ, consistent with a contribution of neuromuscular factors extrinsic to motor neurons, with distal branches being more susceptible. These results show that NMJ denervation in ALS is a complex and dynamic process of continuous denervation and new innervation rather than a manifestation of sudden global motor neuron degeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liuji Chen ◽  
Ren Na ◽  
Kirsten Danae McLane ◽  
Cody Sylvester Thompson ◽  
Ju Gao ◽  
...  

AbstractDegeneration and death of motor neurons in Amyotrophic Lateral Sclerosis (ALS) are associated with increased lipid peroxidation. Lipid peroxidation is the driver of ferroptosis, an iron-dependent oxidative mode of cell death. However, the importance of ferroptosis in motor neuron degeneration of ALS remains unclear. Glutathione peroxidase 4 (Gpx4) is a key enzyme in suppressing ferroptosis by reducing phospholipid hydroperoxides in membranes. To assess the effect of increased protection against ferroptosis on motor neuron disease, we generated SOD1G93AGPX4 double transgenic mice by cross-breeding GPX4 transgenic mice with SOD1G93A mice, a widely used ALS mouse model. Compared with control SOD1G93A mice, both male and female SOD1G93AGPX4 mice had extended lifespans. SOD1G93AGPX4 mice also showed delayed disease onset and increased motor function, which were correlated with ameliorated spinal motor neuron degeneration and reduced lipid peroxidation. Moreover, cell toxicity induced by SOD1G93A was ameliorated by Gpx4 overexpression and by chemical inhibitors of ferroptosis in vitro. We further found that the anti-ferroptosis defense system in spinal cord tissues of symptomatic SOD1G93A mice and sporadic ALS patients might be compromised due to deficiency of Gpx4. Thus, our results suggest that ferroptosis plays a key role in motor neuron degeneration of ALS.


Neuroscience ◽  
2007 ◽  
Vol 144 (3) ◽  
pp. 991-1003 ◽  
Author(s):  
L. Chi ◽  
Y. Ke ◽  
C. Luo ◽  
D. Gozal ◽  
R. Liu

2020 ◽  
Vol 21 (11) ◽  
pp. 4125
Author(s):  
Yu-Lung Lin ◽  
Yi-Wei Lin ◽  
Jennifer Nhieu ◽  
Xiaoyin Zhang ◽  
Li-Na Wei

Cellular retinoic acid-binding protein 1 (CRABP1) is highly expressed in motor neurons. Degenerated motor neuron-like MN1 cells are engineered by introducing SODG93A or AR-65Q to model degenerated amyotrophic lateral sclerosis (ALS) or spinal bulbar muscular atrophy neurons. Retinoic acid (RA)/sonic hedgehog (Shh)-induced embryonic stem cells differentiation into motor neurons are employed to study up-regulation of Crabp1 by Shh. In SODG93A or AR-65Q MN1 neurons, CRABP1 level is reduced, revealing a correlation of motor neuron degeneration with Crabp1 down-regulation. Up-regulation of Crabp1 by Shh is mediated by glioma-associated oncogene homolog 1 (Gli1) that binds the Gli target sequence in Crabp1′s neuron-specific regulatory region upstream of minimal promoter. Gli1 binding triggers chromatin juxtaposition with minimal promoter, activating transcription. Motor neuron differentiation and Crabp1 up-regulation are both inhibited by blunting Shh with Gli inhibitor GANT61. Expression data mining of ALS and spinal muscular atrophy (SMA) motor neurons shows reduced CRABP1, coincided with reduction in Shh-Gli1 signaling components. This study reports motor neuron degeneration correlated with down-regulation in Crabp1 and Shh-Gli signaling. Shh-Gli up-regulation of Crabp1 involves specific chromatin remodeling. The physiological and pathological implication of this regulatory pathway in motor neuron degeneration is supported by gene expression data of ALS and SMA patients.


Sign in / Sign up

Export Citation Format

Share Document