scholarly journals High frequency plant regeneration of Chrysopogon zizanioides via organogenesis and somatic embryogenesis-an underutilized pharmaceutically valuable biofuel plant

Author(s):  
M. Merlin Monisha ◽  
M. Prakash ◽  
K.R. Saravanan ◽  
Anandan R

Abstract Vetiver (Chrysopogon zizanioides) is an essential oil-producing plant that has tremendous application in cosmetics, perfumery, and herbal medicine. Natural sterility and indiscriminate harvests lead to the risk of extinction of plant species in natural habitats. Therefore, a protocol for regeneration systems via organogenesis and somatic embryogenesis using node, leaf, and root explants has been standardized. The highest shoot regeneration frequency (72.2%) through organogenesis was attained from node explants on MS (Murashige & Skoog) medium comprising 2.0 mg L-1 BAP (“6-benzylaminopurine”). Concurrently, leaf explants cultivated on MS medium augmented by 1.0 mg L-1, 2, 4-D (“2, 4-dichlorophenoxyacetic acid”) formed the optimal frequency (75.35%) of white friable compact (WFC) callus. However, the root explant was less responsive for WFC callus induction. Organogenic WFC callus cultivated on MS medium fortified by kinetin (1.0 mg L-1) as well as BAP (1.0 mg L-1) revealed the highest shoot regeneration efficiency (75.49%) with 48 shoots per callus. Adventitious shoots obtained from node and WFC callus of both leaf and root explants cultivated on MS medium increased by NAA (2.0 mg L-1 showed the optimal rooting of 76.97%. Concomitantly, an elevated frequency of somatic embryogenesis (52.50%) was recorded from leaf explants on MS medium using BAP (0.5 mg L-1) & 2, 4-D (1.0 mg L-1). Leaf explants were superior to node and root explants for somatic embryo initiation. The cotyledonary embryos were efficiently germinated into complete plantlets on a hormone-free MS medium. The plantlets gathered from organogenesis & somatic embryo genesis was effectively acclimatized into phenomenally similar plants. This technique may be applicable for wide-range propagation, genetic engineering, and the formation of bioactive compounds.

2010 ◽  
Vol 2 (2) ◽  
pp. 60-63 ◽  
Author(s):  
Muhammad AASIM

Cowpea (Vigna unguiculata L.) is an economically important grain legume crop and is an important source of dietary protein in many of the developing countries. The present study reports the effect of pulse treatment duration, concentration of NAA and presence of NAA in the culture medium on shoot regeneration from plumular leaf explant of Turkish cowpea cv. ‘Akkiz’ and ‘Karagoz’. Pulse treatment of mature embryos with 20 mg l-1 NAA for 1 and 3 weeks followed by culturing of plumular leaf explant on MS medium containing 0.25, 0.50 and 1.0 BAP with 1.0, 2.0 and 4.0 mg l-1 NAA promoted somatic embryogenesis in both cultivars. Longer duration of pulse treatment was deleterious resulting in browning and consequently death of the embryos on explants. Pulse treatment with 20 mg l-1 NAA for one week was less deleterious and developed two plantlets after the explants were transferred to MS0 medium after 6 weeks through somatic embryogenesis in cv. ‘Akkiz’. Pulse treatment with 10 mg l-1 NAA for 1 week showed 33.33-50.00% and 25.00-50.00% shoot regeneration frequency in cv. ‘Akkiz’ and ‘Karagoz’ respectively on MS medium containing 0.25-1.00 mg l-1 BAP. Maximum number of 2.50 shoots each per explant were recorded in cv. ‘Akkiz’ and ‘Karagoz’ on MS medium containing 1.00 and 0.50 mg l-1 BAP respectively. Contrarily, maximum shoot length of 8.98 cm of cv. ‘Akkiz’ and 9.42 cm of cv. ‘Karagoz’ was recorded on MS medium containing 0.50 mg l-1 BAP and 1.00 mg l-1 BAP respectively. Regenerated shoots were rooted on MS medium containing 0.5 mg l-1 IBA and and acclimatized in growth room at room temperature where they produced viable seeds.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1078A-1078
Author(s):  
Qian Zhang ◽  
Jianjun Chen ◽  
Richard J. Henny

Homalomena `Emerald Gem' is an important ornamental foliage plant and widely used for interior plantscaping. Current propagation of this cultivar has been primarily carried out through in vitro culture by organogenesis; regeneration through somatic embryogenesis has not been documented. This report describes successful plant regeneration via direct somatic embryogenesis from explants of different organs. Somatic embryos formed at and around the cut surface of petiole, spathe, and peduncle explants. Embryos also appeared at the base between expanded ovaries of the spadix segment, and around midrib of leaf explants. The optimal treatments for somatic embryo occurrence from petiole, spathe, and peduncle explants were MS medium containing 0.2 mg/L NAA or 0.5 mg/L 2, 4-D with 2.0 mg/L CPPU, and for spadix explants were MS medium with 0.5 mg/L PAA and 2.5 mg/L TDZ. Somatic embryos appeared 6 to 8 weeks after culture and formed large embryo clumps in 3 to 4 months. Somatic embryos produced more secondary embryos and geminated on induction medium. Multiple shoot development and plant regeneration occurred from somatic embryo clusters on MS medium without hormone or with 2 mg/L BA and 0.2 mg/L NAA. The regenerated plants grew vigorously after transplanting to a soilless container substrate in a shaded greenhouse.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 561a-561
Author(s):  
Mary W. George ◽  
Robert R. Tripepi

Previous reports of somatic embryogenesis on rose tissues involved an embryogenic callus stage with either a complicated multi-step process or low numbers of embryos being produced. We have produced somatic embryos without a callus stage from leaf explants of the cut rose cultivar `Golden Emblem' by using a two step process. Explants were obtained from microshoots of `Golden Emblem' that had been in culture for three years. All experiments were repeated twice. When explants were maintained on Murashige and Skoog (MS) with 0.4 μM NAA and 0.4 μM kinetin for 10 weeks, 10% or less of the explants produced somatic embryos. Keeping the explants on the NAA/kinetin medium for two weeks, then switching to medium with 0, 0.5, 1.0, or 10.0 μM kinetin for the remaining 8 weeks failed to increase embryo production. Decreasing the time the explants were on the NAA/kinetin medium to 8 or 12 days, and then placing explants on MS medium with 1.0 μM kinetin increased somatic embryo production to a maximum of 25%. By limiting the length of time the rose leaf explants were exposed to auxin, direct somatic embryo production was increased.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1066D-1067
Author(s):  
Jae-Dong Chung ◽  
Hong-Yul Kim ◽  
Jung-Hae Suh ◽  
Oh-Chang Kwon ◽  
Chang-kil Kim

Somatic embryo formation was observed on thin-sectioned leaf explants within 3 weeks of culture from two Phalaenopsis hybrids—Phalaenopsis Hwafeng Redjewell `Ching Ruey' Phalaenopsis Chingruey's Giant Ching Ruey' (R×R), and Phalaenopsis Formosa Best Girl Ching Ruey' Depts. Lih Jiang Beauty `S 566' (WR×WR). Frequency of somatic embryo formation was higher in hybrid WRxWR than R×R and optimal concentration of TDZ for the induction of somatic embryos was 9.08 μM. In (WR×WR) embryo proliferation was simultaneously observed after transferring the explants with somatic embryo clumps onto PGR-free half-strength MS medium. Six months after initiation, the culture plantlets were produced. This is the first report on somatic embryogenesis induced directly from the leaf explants using TDZ in Phalaenopsis.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Ana D. Simonović ◽  
Milana M. Trifunović-Momčilov ◽  
Biljana K. Filipović ◽  
Marija P. Marković ◽  
Milica D. Bogdanović ◽  
...  

Centaurium erythraea (centaury) is a traditionally used medicinal plant, with a spectrum of secondary metabolites with confirmed healing properties. Centaury is an emerging model in plant developmental biology due to its vigorous regenerative potential and great developmental plasticity when cultured in vitro. Hereby, we review nearly two decades of research on somatic embryogenesis (SE) in centaury. During SE, somatic cells are induced by suitable culture conditions to express their totipotency, acquire embryogenic characteristics, and eventually give rise to somatic embryos. When SE is initiated from centaury root explants, the process occurs spontaneously (on hormone-free medium), directly (without the callusing phase), and the somatic embryos are of unicellular origin. SE from leaf explants has to be induced by plant growth regulators and is indirect (preceded by callusing). Histological observations and culture conditions are compared in these two systems. The changes in antioxidative enzymes were followed during SE from the leaf explants. Special focus is given to the role of arabinogalactan proteins during SE, which were analyzed using a variety of approaches. The newest and preliminary results, including centaury transcriptome, novel potential SE markers, and novel types of arabinogalactan proteins, are discussed as perspectives of centaury research.


HortScience ◽  
2017 ◽  
Vol 52 (9) ◽  
pp. 1278-1282 ◽  
Author(s):  
Boling Liu ◽  
Hongzhou Fang ◽  
Chaorong Meng ◽  
Ming Chen ◽  
Qingdong Chai ◽  
...  

In the present study, the effect of plant growth regulators (PGRs) on callus regeneration, adventitious shoot differentiation, and root formation of Haworthia turgida Haw. was investigated. The greatest callus induction percentage (95.6%) was achieved with leaf explants inoculated on Murashige and Skoog (MS) medium with 1.0 mg·L−1 6-benzyladenine (BA) and 0.1 mg·L−1 1-naphthaleneacetic acid (NAA), and this callus induction medium supplemented with 2.5 mg·L−1 thidiazuron (TDZ) was optimal for callus proliferation. The maximum number of shoots (25.7) was obtained when the callus was cultured on MS medium supplemented with 1.0 mg·L−1 BA and 0.2 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D). The highest number of roots per shoot (6.2) and highest rooting frequency (82.0%) were obtained when adventitious shoots were inoculated on MS medium with 0.05 mg·L−1 NAA. Regenerated plantlets were transferred to a mixture of vermiculite and soil and acclimated in a greenhouse. The survival rate of the transplanted plantlets was about 91.6%. The rate of ex vitro rooting was 83.3%, indicating that this technique is effective for root induction in H. turgida. This study has established a rapid and efficient micropropagation system that can be beneficial for commercial cultivation and germplasm conservation of H. turgida.


2020 ◽  
Vol 21 (16) ◽  
pp. 5826
Author(s):  
Dariusz Kulus ◽  
Alicja Tymoszuk

Lamprocapnos spectabilis (L.) Fukuhara is a perennial plant species valued in the horticultural, cosmetic, and pharmaceutical markets. To date, however, there were no studies on tissue culture systems in this species when adjusted from non-meristematic explants. The aim of this study is to induce callogenesis, organogenesis, and somatic embryogenesis in non-meristematic explants of Lamprocapnos spectabilis ‘Alba’ cultured in various media and to analyze the chemical diversity of the produced callus. Leaf, petiole, and internode explants were cultured on the modified Murashige and Skoog (MS) medium fortified with various combinations and concentrations of 6-benzyladenine (BA), indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), 2,4-dichlorphenoxyacetic acid (2,4-D), and picloram (PIC). After 10 weeks of culturing, the morphogenetic response of explants was evaluated and the concentration of chlorophylls, carotenoids, anthocyanins, and polyphenols in callus was analyzed. There was no influence of explant type on the callogenesis efficiency (62.1–65.3%). The highest fresh weight of callus was produced on leaf explants in the presence of 2,4-D or PIC. In contrast, the highest share of dry weight was found in internode-derived calli and cultured on IAA-supplemented medium (up to 30.8%). Only 2.5% of all explants regenerated adventitious shoots, while rhizogenesis was reported in 4.5% of explants. Somatic embryos were produced indirectly by 0% to 100% of explants, depending on the culture medium and explant type. The highest mean number of embryos (11.4 per explant) was found on petioles cultured in the MS medium with 0.5 mg·L−1 BA and 1.0 mg·L−1 PIC. Calli cultured in media with NAA usually contained a higher content of primary and secondary metabolites. There was also a significant impact of explant type on the content of anthocyanins, polyphenols, and carotenoids in callus. Further studies should focus on the elicitation of metabolites production in callus culture systems of the bleeding heart.


1970 ◽  
Vol 14 ◽  
pp. 31-38 ◽  
Author(s):  
M Rahman ◽  
M Asaduzzaman ◽  
N Nahar ◽  
MA Bari

Somatic embryos were obtained from cotyledon and midrib explants of Solanum melongena L., cultivar Loda. For callus induction, medium was supplemented with different concentrations of auxin singly or in combination with BAP. The best callusing 83-85% was obtained from both of the explants cultured on MS medium containing 2.0 mgl-1NAA + 0.05 mgl-1BAP. Somatic embryogenesis and shoot regeneration was achieved after transferring the calli to MS medium supplemented with BAP, GA3, NAA and Zeatin. Cotyledon derived calli showed better performance (87%) for regeneration than that of midrib (82%) when sub cultured on MS medium having 2.0 mgl-1 Zeatin + 1.0 mgl-1 BAP. For root induction, MS + 3.0 mgl-1 IBA was proved to be better treatment for average number (14-15) and mean length (12 cm) of roots than those of other treatments. Key words: Eggplant; cotyledon; midrib; callus induction; somatic embryo J. bio-sci. 14: 1-9, 2006


2014 ◽  
Vol 32 (2) ◽  
pp. 170-179 ◽  
Author(s):  
Hernando Criollo ◽  
Margarita Perea ◽  
Mariano Toribio ◽  
Johanna Muñoz

Lulo is a species of great importance to the fruticulture of Colombia, but has significant phytosanitary problems that require an aggressive breeding program oriented toward the production of genotypes with tolerance to phytopathogens. These programs need to establish highly efficient mass plant propagation protocols, such as somatic embryogenesis. This study focused on research on the somatic embryogenesis of lulo using kinetin, naphthalene acetic acid-NAA (Plant Growth Regulators, PGRs), and different sucrose concentrations in a MS medium. Two lulo varieties, Solanum quitoense var. septentrionale and S. quitoense var. quitoense, and two explant types (hypocotyl and cotyledon) were used, incubated in dark conditions at 25±2°C. The highest production percentage of the embryos was obtained when 50 mM of NAA were added to the medium with sucrose (50.0 and 263.1 mM) for the two explant types used. In lulo with spines, the highest percentage of embryonic structures (50%) was observed with cotyledonary leaf explants and 50 mM of NAA ; while in the spineless lulo, the embryonic structures were observed in the same type of explant with 50 mM of NAA + 263.1 mM of sucrose (32%).


2021 ◽  
Vol 12 ◽  
Author(s):  
Denis Okello ◽  
Sungyu Yang ◽  
Richard Komakech ◽  
Yuseong Chung ◽  
Endang Rahmat ◽  
...  

The medicinal plant, Aspilia africana, has been traditionally used in several African countries to treat many diseases such as tuberculosis, cough, inflammation, malaria, osteoporosis, and diabetes. In this study, we developed a protocol for in vitro propagation of A. africana using indirect shoot organogenesis from leaf and root explants of in vitro-grown seedlings and assessed the tissues at different developmental stages. The highest callus induction (91.9 ± 2.96%) from leaf explants was in the Murashige and Skoog (MS) medium augmented with 1.0 mg/L 6-Benzylaminopurine (BAP) and 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) while from root explants, the highest callus induction (92.6 ± 2.80%) was in the same plant tissue culture medium augmented with 0.5 mg/L BAP and 1.0 mg/L 2,4-D. The best shoot regeneration capacity from leaf-derived calli (i.e., 80.0 ± 6.23% regeneration percentage and 12.0 ± 6.23 shoots per callus) was obtained in medium augmented with 1.0 mg/L BAP and 0.05 mg/L α-Naphthaleneacetic acid (NAA); the best regeneration capacity for root-derived calli (i.e., 86.7 ± 6.24% shoot regeneration percentage and 14.7 ± 1.11 shoots per callus) was obtained in the MS medium augmented with 1.0 mg/L BAP, 0.05 mg/L NAA, and 0.1 mg/L Thidiazuron (TDZ). Regenerated plantlets developed a robust root system in 1/2 MS medium augmented with 0.1 mg/L NAA and had a survival rate of 93.6% at acclimatization. The in vitro regenerated stem tissue was fully differentiated, while the young leaf tissue consisted of largely unorganized and poorly differentiated cells with large intercellular airspaces typical of in vitro leaf tissues. Our study established a protocol for the indirect regeneration of A. africana and offers a basis for its domestication, large-scale multiplication, and germplasm preservation. To the best of our knowledge, this is the first study to develop an indirect regeneration protocol for A. africana and conduct anatomical assessment through the different stages of development from callus to a fully developed plantlet.


Sign in / Sign up

Export Citation Format

Share Document