scholarly journals Somatic Embryogenesis in Centaurium erythraea Rafn—Current Status and Perspectives: A Review

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Ana D. Simonović ◽  
Milana M. Trifunović-Momčilov ◽  
Biljana K. Filipović ◽  
Marija P. Marković ◽  
Milica D. Bogdanović ◽  
...  

Centaurium erythraea (centaury) is a traditionally used medicinal plant, with a spectrum of secondary metabolites with confirmed healing properties. Centaury is an emerging model in plant developmental biology due to its vigorous regenerative potential and great developmental plasticity when cultured in vitro. Hereby, we review nearly two decades of research on somatic embryogenesis (SE) in centaury. During SE, somatic cells are induced by suitable culture conditions to express their totipotency, acquire embryogenic characteristics, and eventually give rise to somatic embryos. When SE is initiated from centaury root explants, the process occurs spontaneously (on hormone-free medium), directly (without the callusing phase), and the somatic embryos are of unicellular origin. SE from leaf explants has to be induced by plant growth regulators and is indirect (preceded by callusing). Histological observations and culture conditions are compared in these two systems. The changes in antioxidative enzymes were followed during SE from the leaf explants. Special focus is given to the role of arabinogalactan proteins during SE, which were analyzed using a variety of approaches. The newest and preliminary results, including centaury transcriptome, novel potential SE markers, and novel types of arabinogalactan proteins, are discussed as perspectives of centaury research.

2016 ◽  
Vol 71 (2) ◽  
Author(s):  
Fetrina OKTAVIA ◽  
. SWANTO ◽  
Asmini BUDIANI

SummaryTissue culture technique for arabica coffeefaces some problems, mainly in plantletsregeneration from cultured explants. Theobjectives of this experiment were to examine theeffect 2,4-D and 2-ip combinations on somaticembryogenesis and regeneration of arabicacoffee from several different explants. Basalmedium used in this experiment was MS mediumwith ½ concentration of macro and micro salts.Experiment to induce primary somatic embryos(SE) was arranged in factorial randomizedcomplete design with 10 repeats. The first factorwas the type of explants, leaf, epicotyl, hipocotyland root explants. The second factor was plantgrowth regulator i.e. combination of 1  M 2,4-Dwith 5, 10, 15, 20  M and combination of 5  M2,4-D with 5, 10, 15 and 20  M 2-ip. To multiplySE, secondary SE was induced from primary SEon medium containing combination of 0.6  MIAA and 13.3; 17.8 and 22.2  M BAP.Cotyledonary SE were germinated on mediacontaining GA 3 (0, 5, 10 and 15  M), and thenregenerated on medium free of growth regulator.Plantlets with 4-5 leaf pairs were transfered intothe soil medium for acclimatization. The resultsshow that primary SE can be induced from allexplants with the highest frequency on mediumcontaining 1  M 2,4-D and 15  M 2-ip.Induction of primary SE, in leaf explant wasmore effective than other explants. Mediumcontaining 0.6  M IAA and 22.2  M BAP gavethe highest percentage of SE multiplication i.e.52.6% with average SE number of 6.25. Plantletsregeneration can be conducted by culturing SEon maturation medium free of growth regulatorfor one month followed by germinating onmedium containing GA 3 , and then culturing onmedium free of growth regulator again. Thehighest percentage of germinated embryos wasobtained after three weeks and six weekscultured in the medium containing 5  M GA 3 , i.e49% and 90.15 respectively. From total plantletsobtained, 75% of them were normal. Sixtypercents of the young plants grew well in thegreenhouse.RingkasanTeknik kultur jaringan tanaman kopi arabikamasih menghadapi beberapa kendala terutamapada tingkat regenerasi planlet dari eksplan yangdikulturkan. Penelitian ini bertujuan untukmengetahui pengaruh kombinasi 2,4-D dan 2-ipterhadap embriogenesis somatik dan regenerasikopi arabika dari berbagai eksplan. Media dasaryang digunakan adalah medium MS ½konsentrasi garam makro dan mikro. Percobaaninduksi embrio somatik (ES) primer disusunmenurut rancangan acak lengkap faktorial dengan10 ulangan. Faktor pertama adalah jenis eksplan,erdiri atas daun, epikotil, hipokotil dan akar invitro. Faktor kedua adalah zat pengatur tumbuh,yaitu kombinasi 1 M 2,4-D dengan 5, 10, 15dan 20M 2-ip, serta kombinasi 5 M 2,4-Ddengan 5, 10, 15 dan 20 M 2-ip. Untuk mem-perbanyak jumlah ES yang didapatkan, dilakukaninduksi ES sekunder dari ES primer pada mediumyang mengandung kombinasi 0,6 M IAA dan13,3; 17,8 dan 22,2 M BAP. ES fase kotiledonkemudian dikecambahkan pada medium yangmengandung GA 3 (0, 5, 10 dan 15 M) danselanjutnya diregenerasikan pada medium tanpazat pengatur tumbuh. Planlet yang mempunyai4-5 pasang daun dipindahkan ke medium tanahuntuk aklimatisasi. Hasil yang diperolehmenunjukkan bahwa ES primer dapat diinduksipada semua eksplan yang digunakan denganfrekuensi tertinggi pada medium yang me-ngandung 1 M 2,4-D dan 15 M 2-ip. InduksiES primer pada eksplan daun lebih efektifdibandingkan eksplan lainnya. Untuk per-banyakan ES, medium yang mengandung IAA0,6 M dan BAP 22,2 M memberikanpersentase tertinggi pembentukan ES sekunderyaitu 52,6% dengan rata-rata jumlah ES 6,25.Regenerasi planlet dapat dilakukan denganmengkulturkan ES pada medium maturasi tanpazat pengatur tumbuh selama satu bulan, kemudiandikecambahkan dalam medium yang mengan-dung GA 3 , dan selanjutnya dipindah ke mediumtanpa zat pengatur tumbuh kembali.Perkecambahan ES tertinggi diperoleh padamedium dengan penambahan GA 3 5 M yaitu40,9% setelah tiga minggu dan 90,1% setelahenam minggu. Dari total planlet diperoleh 75%planlet normal. Hasil aklimatisasi menunjukkanbahwa 60% bibit mampu bertahan di rumah kaca.


1995 ◽  
Vol 43 (4) ◽  
pp. 385-390 ◽  
Author(s):  
S. Kulothungan ◽  
A. Ganapathi ◽  
A. Shajahan ◽  
K. Kathiravan

Embryogenic callus was induced from seedling leaf explants of cowpea (Vigna unguiculata (L.) Walp. cv. C152 on Murashige and Skoog (MS) medium containing 2.0 mg 1−1 2,4-dichlorophenoxyacetic acid (2,4-D). The maximum frequency of somatic embryogenesis was noticed when this callus was transferred to MS liquid medium supplemented with 2 mg 1−1 2,4-D. Further studies on ontogeny of somatic embryos showed that the cells destined to become somatic embryos divided into spherical or filamentous proembryos. Subsequent divisions in the proembryo led to globular, heart, torpedo-shaped, and cotyledonary-stage somatic embryos. Tiny plantlets were obtained by transferring the cotyledonary-stage somatic embryos to MS liquid medium containing 0.5 mg 1−1 2,4-D.


2016 ◽  
Vol 71 (2) ◽  
Author(s):  
Fetrina OKTAVIA ◽  
. SWANTO ◽  
Asmini BUDIANI

SummaryTissue culture technique for arabica coffeefaces some problems, mainly in plantletsregeneration from cultured explants. Theobjectives of this experiment were to examine theeffect 2,4-D and 2-ip combinations on somaticembryogenesis and regeneration of arabicacoffee from several different explants. Basalmedium used in this experiment was MS mediumwith ½ concentration of macro and micro salts.Experiment to induce primary somatic embryos(SE) was arranged in factorial randomizedcomplete design with 10 repeats. The first factorwas the type of explants, leaf, epicotyl, hipocotyland root explants. The second factor was plantgrowth regulator i.e. combination of 1  M 2,4-Dwith 5, 10, 15, 20  M and combination of 5  M2,4-D with 5, 10, 15 and 20  M 2-ip. To multiplySE, secondary SE was induced from primary SEon medium containing combination of 0.6  MIAA and 13.3; 17.8 and 22.2  M BAP.Cotyledonary SE were germinated on mediacontaining GA 3 (0, 5, 10 and 15  M), and thenregenerated on medium free of growth regulator.Plantlets with 4-5 leaf pairs were transfered intothe soil medium for acclimatization. The resultsshow that primary SE can be induced from allexplants with the highest frequency on mediumcontaining 1  M 2,4-D and 15  M 2-ip.Induction of primary SE, in leaf explant wasmore effective than other explants. Mediumcontaining 0.6  M IAA and 22.2  M BAP gavethe highest percentage of SE multiplication i.e.52.6% with average SE number of 6.25. Plantletsregeneration can be conducted by culturing SEon maturation medium free of growth regulatorfor one month followed by germinating onmedium containing GA 3 , and then culturing onmedium free of growth regulator again. Thehighest percentage of germinated embryos wasobtained after three weeks and six weekscultured in the medium containing 5  M GA 3 , i.e49% and 90.15 respectively. From total plantletsobtained, 75% of them were normal. Sixtypercents of the young plants grew well in thegreenhouse.RingkasanTeknik kultur jaringan tanaman kopi arabikamasih menghadapi beberapa kendala terutamapada tingkat regenerasi planlet dari eksplan yangdikulturkan. Penelitian ini bertujuan untukmengetahui pengaruh kombinasi 2,4-D dan 2-ipterhadap embriogenesis somatik dan regenerasikopi arabika dari berbagai eksplan. Media dasaryang digunakan adalah medium MS ½konsentrasi garam makro dan mikro. Percobaaninduksi embrio somatik (ES) primer disusunmenurut rancangan acak lengkap faktorial dengan10 ulangan. Faktor pertama adalah jenis eksplan,erdiri atas daun, epikotil, hipokotil dan akar invitro. Faktor kedua adalah zat pengatur tumbuh,yaitu kombinasi 1 M 2,4-D dengan 5, 10, 15dan 20M 2-ip, serta kombinasi 5 M 2,4-Ddengan 5, 10, 15 dan 20 M 2-ip. Untuk mem-perbanyak jumlah ES yang didapatkan, dilakukaninduksi ES sekunder dari ES primer pada mediumyang mengandung kombinasi 0,6 M IAA dan13,3; 17,8 dan 22,2 M BAP. ES fase kotiledonkemudian dikecambahkan pada medium yangmengandung GA 3 (0, 5, 10 dan 15 M) danselanjutnya diregenerasikan pada medium tanpazat pengatur tumbuh. Planlet yang mempunyai4-5 pasang daun dipindahkan ke medium tanahuntuk aklimatisasi. Hasil yang diperolehmenunjukkan bahwa ES primer dapat diinduksipada semua eksplan yang digunakan denganfrekuensi tertinggi pada medium yang me-ngandung 1 M 2,4-D dan 15 M 2-ip. InduksiES primer pada eksplan daun lebih efektifdibandingkan eksplan lainnya. Untuk per-banyakan ES, medium yang mengandung IAA0,6 M dan BAP 22,2 M memberikanpersentase tertinggi pembentukan ES sekunderyaitu 52,6% dengan rata-rata jumlah ES 6,25.Regenerasi planlet dapat dilakukan denganmengkulturkan ES pada medium maturasi tanpazat pengatur tumbuh selama satu bulan, kemudiandikecambahkan dalam medium yang mengan-dung GA 3 , dan selanjutnya dipindah ke mediumtanpa zat pengatur tumbuh kembali.Perkecambahan ES tertinggi diperoleh padamedium dengan penambahan GA 3 5 M yaitu40,9% setelah tiga minggu dan 90,1% setelahenam minggu. Dari total planlet diperoleh 75%planlet normal. Hasil aklimatisasi menunjukkanbahwa 60% bibit mampu bertahan di rumah kaca.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1068b-1068
Author(s):  
R. A. Hoyos ◽  
G. L. Hosfield

Opaque globules formed on bean callus induced on primary leaf explants cultured on induction media (IM) containing 10 to 30 mg/l 2,4-D. Calli with globules produce structures reminiscent of somatic embryos (embryoids) after subculture in a liquid challenge medium (LCM). Calli maintained on IM for 2, 3, 4, and 5 weeks produced significantly more (26 to 34/callus) embryoids in LCM than calli maintained on IM for one week (12/callus). Well developed embryoids only occurred after calli were subculture in liquid B5 with 0.1 to 1.0 mg/l IBA. Calli subculture in LCM with > 10 mg/l IBA turned necrotic and died. Embryoids produced in B5 with 2,4-D and NAA (0.1 to 1.0 mg/l) proliferated roots and formed “frosty” appearing structures, respectively. No differences were detected in number or quality of embryoids produced in LCM from callus maintained on IM in continuous light or darkness regardless of the induction time. Ethylene accumulation in IM cultures inhibited globule formation.


2021 ◽  
Author(s):  
M. Merlin Monisha ◽  
M. Prakash ◽  
K.R. Saravanan ◽  
Anandan R

Abstract Vetiver (Chrysopogon zizanioides) is an essential oil-producing plant that has tremendous application in cosmetics, perfumery, and herbal medicine. Natural sterility and indiscriminate harvests lead to the risk of extinction of plant species in natural habitats. Therefore, a protocol for regeneration systems via organogenesis and somatic embryogenesis using node, leaf, and root explants has been standardized. The highest shoot regeneration frequency (72.2%) through organogenesis was attained from node explants on MS (Murashige & Skoog) medium comprising 2.0 mg L-1 BAP (“6-benzylaminopurine”). Concurrently, leaf explants cultivated on MS medium augmented by 1.0 mg L-1, 2, 4-D (“2, 4-dichlorophenoxyacetic acid”) formed the optimal frequency (75.35%) of white friable compact (WFC) callus. However, the root explant was less responsive for WFC callus induction. Organogenic WFC callus cultivated on MS medium fortified by kinetin (1.0 mg L-1) as well as BAP (1.0 mg L-1) revealed the highest shoot regeneration efficiency (75.49%) with 48 shoots per callus. Adventitious shoots obtained from node and WFC callus of both leaf and root explants cultivated on MS medium increased by NAA (2.0 mg L-1 showed the optimal rooting of 76.97%. Concomitantly, an elevated frequency of somatic embryogenesis (52.50%) was recorded from leaf explants on MS medium using BAP (0.5 mg L-1) & 2, 4-D (1.0 mg L-1). Leaf explants were superior to node and root explants for somatic embryo initiation. The cotyledonary embryos were efficiently germinated into complete plantlets on a hormone-free MS medium. The plantlets gathered from organogenesis & somatic embryo genesis was effectively acclimatized into phenomenally similar plants. This technique may be applicable for wide-range propagation, genetic engineering, and the formation of bioactive compounds.


2019 ◽  
Vol 47 (4) ◽  
pp. 1081-1086
Author(s):  
Thiago da Silva MESSIAS ◽  
Rodrigo Kelson Silva REZENDE ◽  
Luciely Faustino Da SILVA ◽  
Maílson Vieira JESUS ◽  
Geisianny Pereira NUNES

Allophylus edulis (A.St.-Hil., Cambess. and A. Juss.) Radlk., commonly known as cocum, belongs to the Sapindaceae family. This species is of great medicinal interest, with studies showing that its fruits have antioxidant, anti-cholinesterase, and cytotoxic activity. In addition, it is used in traditional medicine as an antidiarrheal, anti-inflammatory and antihypertensive. The objective of this study was to perform somatic embryogenesis in vitro from leaf and root explants of Allophylus edulis, using different 6-benzylaminopurine (BAP) concentrations combined with naphthalene acetic acid (NAA). All treatments exhibited 100% callus formation, except for the treatment without supplementation of growth regulators. The calluses developed in treatments from leaf explants showed up to two colors (brown and brown/cream), and the highest fresh and dry mass was observed in the treatment with 0.5 mg L-1 of BAP with 0.1 mg L-1 of NAA. There was no shoot formation from the leaf explants. The callogenesis in treatments from root segments showed callus formation with up to three colors (brown, brown/cream, and cream/green), and the highest fresh and dry mass was obtained when cultivated with 2.0 mg L-1 of BAP combined with 0.1 mg L-1 of NAA. These auxin and cytokinin concentrations also showed a higher number of shoots. The interaction between auxin and cytokinin is recommended to obtain somatic embryogenesis in root segments and callus with morphological characteristics suitable for organogenesis.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


1993 ◽  
Vol 71 (11) ◽  
pp. 1496-1502 ◽  
Author(s):  
D. Bieysse ◽  
A. Gofflot ◽  
N. Michaux-Ferrière

The somatic embryogenic potential of leaf explants from greenhouse-grown plants of eight Coffea arabica genotypes was investigated on three different gelose-gelled culture media (Dublin, Pierson, and Yasuda). Four of these genotypes were reactive. Optimal somatic embryogenesis was obtained when the explants were taken from microcutting and cultured on gelrite-gelled Yasuda's medium. Under these culture conditions, somatic embryos and plantlets were obtained in two previously recalcitrant genotypes. The histocytological callus development was found to be identical in responsive or recalcitrant genotypes. Embryogenic cells formed at two successive points during callogenesis and their subsequent development varied according to culture conditions. Cells initiated in 10- to 15-day-old calli either degenerated or developed directly into embryos. Cells initiated in 60-day-old calli became isolated and developed into embryos or their development was arrested. Embryos obtained in these conditions were able to develop into plantlets. Key words: Coffea arabica, genotypic variability, histocytology, in vitro culture, somatic embryogenesis.


Author(s):  
Ghan Singh Maloth ◽  
Rajinikanth Marka ◽  
Rama Swamy Nanna

In the present study it was reported on direct somatic embryogenesis and plant regeneration from cotyledon and leaf explants of Turkey berry/pea egg plant (Solanum torvum SW), a medicinally important plant. Somatic embryogenesis has several advantages over other routes of in vitro plant regeneration. Somatic embryogenesis was induced directly from cotyledon and leaf explants on MS medium fortified with BAP (0.5 mg/L)+NAA (0.5-6.0 mg/L). High percentage of somatic embryogenesis (90%), maximum number of somatic embryos formation (62±0.18)  along with high percentage (76%) conversion of somatic embryos into bipolar embryos was observed on cotyledon explants in 0.5 mg/L BAP+2.5 mg/L NAA. At the same concentration of BAP (0.5 mg/L)+NAA (2.5 mg/L) also resulted  on the maximum percentage of somatic embryogenesis (92%), the highest number of somatic embryos formation (88±0.15) and the highest percentage (76%) of somatic embryos conversion into bipolar embryos in leaf explants. A mixture of globular, heart and torpedo-shaped embryos were germinated on MS medium supplemented with 0.5 mg/L IAA+1.0-4.0 mg/L BAP. Maximum germination frequency (75±0.14) of somatic embryos and plantlet formation was found in 0.5 mg/L IAA+2.0 mg/L BAP, but they didn’t germinate on ½ MSO and MSO media. The survival rate of regenerated plants after field transfer was recorded to be 75%. These regenerated plants were found morphologically similar to donor plants. The present protocol can be used for conservation of the species and also for genetic transformation experiments in S. torvum.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 568B-568a
Author(s):  
Lianghong Chen ◽  
Ajmer S. Bhagsari ◽  
Soon O. Park ◽  
Sarwan Dhir

This study was carried out to optimize conditions for plant regeneration of sweetpotato [Ipomoea batatas (L.) Lam] using shoot tips, petioles, and leaves of Selection 75-96-1 as explants in Murashige and Skoog (MS) with several growth regulators at different levels. Callus initiation and callus proliferation media were 9.0 μm 2,4-dichlorophenoxyacetic acid (2,4-D) and 9.0 μm 2,4-D + 1.1 μm N6-benzyladenine (6-BA) in protocol I; 8.1 μm α-naphthaleneacetic acid (NAA) + 1.2 μm kinetin (KIN) and 5.4 μm NAA + 4.6 μm KIN in protocol II; 0.9 μm 2,4-D, and 0.9 μm 2,4-D + 1.2 μm N-isopenylamino purine (2iP) in protocol III; NAA (8.1 μm) + KIN (1.2 μm) and 2,4-D (0.9 μm) + 2ip (1.2 μm) in protocol IV, respectively. In protocol I and II, shoot tip, petiole, and leaf were used, but only petiole and leaf in protocol III and IV. In the protocol I and II, somatic embryos were obtained only from shoot tip explants; in protocol III and IV, only from petioles. The frequencies of somatic embryo development were 33.3% in protocol I, 42.1% in protocol II, 21.2% in protocol III, and 10.3% in protocol IV, respectively. The leaf explants failed to produce somatic embryos in all the experiments. In protocol I, somatic embryogenesis occurred through the well-known sequence of globular-, heart-shaped-, torpedo-, and cotyledon-type embryos. However, in protocol II, the structures resembling plumule and radicle were observed before the emergence of torpedo/cotyledon type embryo clusters. The somatic embryogenesis in protocol III and IV was similar to that in protocol I. Growth regulators influenced somatic embryo development. Further, this study showed that explant resource and growth regulators affected the frequency of plant regeneration in sweetpotato.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1870
Author(s):  
Danijela M. Paunović ◽  
Katarina B. Ćuković ◽  
Milica D. Bogdanović ◽  
Slađana I. Todorović ◽  
Milana M. Trifunović-Momčilov ◽  
...  

Centaurium erythraea (centaury) is a medicinal plant with exceptional developmental plasticity in vitro and vigorous, often spontaneous, regeneration via shoot organogenesis and somatic embryogenesis, during which arabinogalactan proteins (AGPs) play an important role. AGPs are highly glycosylated proteins belonging to the super family of O-glycosylated plant cell surface hydroxyproline-rich glycoproteins (HRGPs). HRGPs/AGPs are intrinsically disordered and not well conserved, making their homology-based mining ineffective. We have applied a recently developed pipeline for HRGP/AGP mining, ragp, which is based on machine learning prediction of proline hydroxylation, to identify HRGP sequences in centaury transcriptome and to classify them into motif and amino acid bias (MAAB) classes. AGP sequences with low AG glycomotif representation were also identified. Six members of each of the three AGP subclasses, fasciclin-like AGPs, receptor kinase-like AGPs and AG peptides, were selected for phylogenetic and expression analyses. The expression of these 18 genes was recorded over 48 h following leaf mechanical wounding, as well as in 16 tissue samples representing plants from nature, plants cultivated in vitro, and developmental stages during shoot organogenesis and somatic embryogenesis. None of the selected genes were upregulated during both wounding recovery and regeneration. Possible functions of AGPs with the most interesting expression profiles are discussed.


Sign in / Sign up

Export Citation Format

Share Document