scholarly journals Crystallization Behavior of Polyvinyl Alcohol With Inorganic Nucleating Agent Talc and Regulation Mechanism Analysis

Author(s):  
Ruru Huang ◽  
Yane Zhang ◽  
Aimin Xiang ◽  
Songbai Ma ◽  
huafeng tian ◽  
...  

Abstract Polyvinyl alcohol (PVA) decompose before melting, making it difficult for melt processing. This phenomenon limits the applications of PVA. Therefore, to widen the application of PVA, in the present work, the PVA films have been prepared by the flow casting method. And talc added as an inorganic nucleating agent to improve the crystallinity of PVA. The effects of talc on the crystallization behavior of PVA are tested by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and successive self-nucleation annealing (SSA). The crystallization kinetics behavior of talc was is further studied by Mo Zhishen equation and Avrami equation. The results show that the addition of talc to the PVA film promotes its crystallization, and as the content of the nucleating agent increases, the crystallinity tends to increase, and the thickness of the wafer becomes uniform due to the increase of nucleation points. These results show that talc regulates the crystallization of PVA, improves the crystallinity and crystallization rate of PVA, and has a heterogeneous nucleation effect. PVA itself exhibits hydrophilicity because it contains large number of hydroxyl groups, and has good physical and chemical properties. In addition, the mechanical properties and water resistance have been further improved by improving the crystallinity of PVA, and the practicability of PVA film in actual production was improved.

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 702-709
Author(s):  
Hyeong Min Yoo ◽  
Su-Yeon Jeong ◽  
Sung-Woong Choi

Abstract The aim of this study was to determine the rheological property and crystallization behavior of polylactic acid (PLA) with improved heat resistance (Ingeo™ Biopolymer 4032D) through investigation of the melt viscosity and crystallization kinetics of PLA at different process temperatures. The viscosity was measured using a rotational rheometer under conditions of shear rates of 0.01, 0.1, and 1/s. The obtained rheological data show that the viscosity tended to decrease slightly as the shear rate increases and decrease sharply as the temperature increases from 180°C to 210°C. To investigate the effect of the process temperature on the crystallization kinetics and final crystallinity of PLA, thermal analysis using isothermal differential scanning calorimetry (DSC) were also performed. The Avrami equation was successfully applied for the isothermal crystallization kinetics model. From crystallization temperature of 85°C to 120°C, we found that the Ingeo™ Biopolymer 4032D PLA had the fastest crystallization rate (t 1/2: 26.0 min) and the largest crystallinity (47.4%) at 100°C.


2011 ◽  
Vol 284-286 ◽  
pp. 353-359 ◽  
Author(s):  
Xiao Hua Gu ◽  
Jia Liang Zhou ◽  
Jian Hong Liu

In this paper, crystallization kinetics behavior of a high heat-absorbing PET / TiN nanocomposite ,the effect of the crystallization behavior of adding nanoendothermic agent,and their crystallization rate and crystallization were studied by differential scanning calorimeter (DSC) ,researching the effect of crystallization behavior of PET with modified TiN and using Avrami equation to study non-isothermal crystallization kinetics. The results show that the kinetic rate constant Zc increasing with the increase of cooling rate, the crystallization half time t1 / 2 subsequently reduced, the crystal growth become fast; TiN is a good nucleating agent in PET, improve PET’s crystallization rate, adding TiN reduce the crystallization activation energy. This has important significance to guide nanocomposite processing.


2012 ◽  
Vol 488-489 ◽  
pp. 671-675 ◽  
Author(s):  
Worasak Phetwarotai ◽  
Duangdao Aht-Ong

Polylactide biodegradable composite films were prepared via melt extrusion using a twin screw extruder. The effects of type and content of nucleating agent and cooling rate on the thermal and tensile properties of these films were investigated. Two types of nucleating agent, talc and nano precipitated calcium carbonate (NPCC), were studied at various contents from 0 to 2.0 phr. Nonisothermal crystallization behavior of composites was characterized by a differential scanning calorimetry (DSC). The cooling rate was varied from 1 to 10°C/min. The results indicated that the presence of nucleating agent significantly influenced on thermal and tensile properties of the PLA composite films. DSC thermograms revealed that the addition of nucleating agent on the PLA films led to an increase of crystallization temperature (Tc), crystallization rate, and degree of crystallization (χc) compared to the neat PLA. These behaviors could be noticed in both the nucleated PLA films with NPCC and talc. In contrast, the Tc and crystallization half-time (t1/2) of these films significantly decreased when the cooling rate increased from 1 to 10°C/min. However, thermal stability of the films decreased when the nucleating agent content increased, especially that of the composites with NPCC.


2019 ◽  
Vol 39 (2) ◽  
pp. 124-133 ◽  
Author(s):  
Bingxiao Liu ◽  
Guosheng Hu ◽  
Jingting Zhang ◽  
Zhongqiang Wang

AbstractStudy of the crystallization kinetics is particularly necessary for the analysis and design of processing operations, especially the non-isothermal crystallization behavior, which is due to the fact that most practical processing techniques are carried out under non-isothermal conditions. The non-isothermal crystallization behaviors of polyamide 6 (PA6) and PA6/high-density polyethylene/maleic anhydride/2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (PA6/HDPE/MAH/L-101) composites were investigated by differential scanning calorimetry (DSC). The crystallization kinetics under non-isothermal condition was analyzed by the Jeziorny and Mo equations, and the activation energy was determined by the Kissinger and Takhor methods. The crystal structure and morphology were analyzed by wide-angle X-ray diffraction (WXRD) and polarized optical microscopy (POM). The results indicate that PA6/HDPE/MAH/L-101 has higher crystallization temperature and crystallization rate, which is explained as due to its heterogeneous nuclei.


2012 ◽  
Vol 268-270 ◽  
pp. 37-40 ◽  
Author(s):  
Yan Hua Cai

The Poly(L-lactic acid)(PLLA)/surface-grafting silica(g-SiO2) nanocomposites were prepared by melt blending. The isothermal crystallization behavior of PLLA/g-SiO2 nanocomposites with different content of g-SiO2 was investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods and half times for overall PLLA crystallization (95°C Tc 120°C) were affected by the crystallization temperature and the content of g-SiO2 in nanocomposites. The results showed that g-SiO2 as a kind of heterogeneous nucleating agent can reduce induction periods and half times for overall PLLA crystallization. The thermal properties of PLLA/g-SiO2 samples were also investigated by differential scanning calorimetry (DSC), The results showed that the crystalline degree of PLLA was improved as the presence of g-SiO2.


2012 ◽  
Vol 184-185 ◽  
pp. 932-935
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The crystallization behavior of PE/MMT nanocomposites at different MMT concentrations (from 0.1 to 1.2 wt %) were investigated by differential scanning calorimetry (DSC). The equilibrium melting points increase by the addition of MMT. The crystallization rates of PE/MMT nanocomposites are faster than those of pure PE. The addition of MMT facilitated the crystallization of PE, with the MMT functioning as a heterogeneous nucleating agent at lower content; at higher concentrations, however, the physical hindrance of the MMT layers to the motion of PE chains retarded the crystallization process.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuhai Wang ◽  
Hao Shen ◽  
Gu Li ◽  
Kancheng Mai

AbstractPP/nano-CaCO3 composites with different interfacial interaction were prepared by addition of compatibilizers with the same polar groups but different backbones. The non-isothermal and isothermal crystallization behavior of PP/nano- CaCO3 composites was investigated using differential scanning calorimetry (DSC). The results indicated that the interfacial interaction between PP and nano-CaCO3 increased the crystallization temperature and crystallization rate of PP due to the heterogeneous nucleation of nano-CaCO3. The interfacial interaction between nano- CaCO3 and compatibilizer further increased the crystallization temperature and crystallization rate of PP and induced the formation of β-crystal of PP due to the synergistic effect of heterogeneous nucleation between nano-CaCO3 and compatibilizer. This synergistic effect of heterogeneous nucleation between nano- CaCO3 and compatibilizer depended on the interfacial interaction between compatibilizer and PP matrix. The increased compatibility between compatibilizer and PP matrix favoured the heterogeneous nucleation between nano-CaCO3 and compatibilizer


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingchun Li ◽  
Guosheng Hu ◽  
Bin He

AbstractNylon 11 nanocomposites with different montmorillonite loadings were successfully prepared by melt compounding. XRD and TEM show the exfoliated nanocomposites are formed at low montmorillonite concentration (less than 2 wt%) and the intercalated nanocomposites are obtained at higher montmorillonite contents. TGA shows that the thermal stability of the nanocomposites is improved by 27 °C when the montmorillonite content is only 2wt%. At the same time, The crystallization behavior of nylon11/montmorillonite nanocomposites has been studied by means of XRD, DSC.The Avrami equation described well the isothermal crystallization behavior of nylon11 and nylon11/montmorillonite nanocomposites. The results showed that the montmorillonite acted as the nucleating agent and facilitated the crystal growth rate of nylon 11 matrix. The incorporation of montmorillonite did not change the crystal morphology of nylon 11 but increased the crystallization temperature and decreased the crystallization activation energy, which lead to a easy crystallization of nylon11. Mechanical testing shows that the Izod impact strength of all nanocomposites are higher than that of the neat nylon 11, but the tensile strength of the nanocomposites decrease at low nanofiller concentrations (less than 8wt%) and then increased, when the montmorillonite content is 10wt% ,the tensile strength of the nanocomposite is 5% improved than neat nylon 11. This is may be due to the strong interaction between the nylon 11 matrix and the montmorillonite interface.


2012 ◽  
Vol 627 ◽  
pp. 827-830
Author(s):  
Bing Xin Sun ◽  
Xu Qiao Feng ◽  
Cheng Zhi Chuai ◽  
Ying Guo ◽  
Si Luo

The crystallization properties of P(3HB-co-4HB) modified with nucleating agent BN was studied. DSC is used to analyze the melting crystallization behavior and POM is used to characterize crystal structure and morphology. The results show the incorporation of BN decreased the spherulite size, increased the crystallization rate and improved the crystallization properties of P(3HB-co-4HB).


2010 ◽  
Vol 150-151 ◽  
pp. 1466-1469
Author(s):  
Ya Li Bai ◽  
Hong Xu ◽  
Zhi Ping Mao

Poly(L-lactic acid)-co-bisphenol-A epoxy resin/vermiculite nanocomposites(PLLA-co-bis A /VMT)were prepared by in-situ melt polycondensation of L-LA in the presence of amino-modified vermiculite. The fourier transform infrared (FTIR) spectra were used to investigate molecular interactions between the modified vermiculite and PLLA. The detailed thermal property and crystallization behavior of samples were studied by using polarized optical microscopy (POM), differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). The result indicated that the thermal stability, overall crystallization rate and spherulitic texture of PLLA-co-bis A were strongly influenced in the presence of vermiculite particles.


Sign in / Sign up

Export Citation Format

Share Document