scholarly journals Cryptococcus gattii VGI Subtypes: Geographical Distribution, Molecular Traits, and Virulence Difference

Author(s):  
Xinying Xue ◽  
Wei Tang ◽  
Xuelei Zang ◽  
Weixin Ke ◽  
Yuxia Liu ◽  
...  

Abstract Background: As a life-threatening fungus, Cryptococcus gattii (C gattii) species complex is emerging worldwide. However, the geographical distribution, molecular traits, and virulence difference are poorly characterized in China.Results: From 2011 to 2017, we collected 32 strains of C gattii from 18 hospitals across China, of which 27 [84·4%] strains molecular traits were profiled by whole-genome sequencing (WGS) and multi-locus sequence typing (MLST) and compared with strains previously described in China from 2006 to 2020. Totally 119 clinical cases caused by C gattii strains (87 in previous reports and 32 in our study) distributed widely in 20 provincial-level administrative regions of China, of which 114 strains molecular types were obtained. The majority molecular type was VGI (81/114, 71·1%) and the other was VGII (33/114, 28·9%). Four major subtypes of VGI (VGIa, VGIb, VGIc, and VGId) were revealed from global C gattii VGI (n=308), respectively accounting for 52·9% (163/308), 36·0% (111/308), 3·9% (12/308), and 4·2% (13/308). The other nine strains could not be assigned to these four subtypes clearly. Our clinical data suggested that VGIb cases had a worse clinical outcome than VGIa, which was consistent with in vitro and in vivo experiments. In addition, a candidate virulence SNP on SOD2 in VGIa was initially identified by comparing high-quality de novo reference genome.Conclusions: The geographical distribution of C gattii species complex was first described in China. C gattii VGI could be clearly segregated into four major subtypes based on genomics profiles and VGIb was more virulent than VGIa in China. Our study suggests the molecular type of C gattii is necessary for personalized treatment in clinic.

2009 ◽  
Vol 11 (4) ◽  
pp. 56 ◽  
Author(s):  
Tomoaki Kurosaki ◽  
Takashi Kitahara ◽  
Mugen Teshima ◽  
Koyo Nishida ◽  
Junzo Nakamura ◽  
...  

Purpose: In gene delivery, a fusogenic lipid such as dioleyl phosphatidylethanolamine (DOPE) which is a component of cationic liposomal vector is important factor for effective transfection efficiency. We investigated the effect of penetration enhancers as alternative helper-lipids to DOPE. Methods: Transdermal penetraion enhancers such as N-lauroylsarcosine (LS), (R)-(+)-limonene (LM), vitamin E (VE), and phosphatidyl choline from eggs (EggPC) were used in this experiments as helper-lipids with N-[1-(2, 3-dioleyloxy) propyl]-N, N, N-trimethlylammonium chloride (DOTMA) and cholesterol (CHOL). We examined in vitro transfection efficiency, cytotoxicity, hematotoxicity, and in vivo transfection efficiency of plasmid DNA/cationic liposomes complexes. Results: In transfection experiments in vitro, the cationic lipoplexes containing LS had highest transfection efficiency among the other lipoplexes independently of FBS. Furthermore, the lipoplexes containing LS had lowest cell toxicity among the other lipoplexes in the presence of FBS. As the results of erythrocytes interaction experiment, DOTMA/LS/CHOL, DOTMA/VE/CHOL, and DOTMA/EggPC/CHOL lipoplexes showed extremely lower hematotoxicity. On the basis of these results, the in vivo transfection efficiencies of the lipoplexes were examined. The lipoplexes containing LS had the highest transfection activity among the other lipoplexes. Conclusion: In conclusion, several transdermal penetration enhancers are available for alternative helper-lipids to DOPE in cationic liposomal vectors. Among them, DOTMA/LS/CHOL lipoplexes showed superior characteristics in in vitro transfection efficiency, cell toxicity, hematotoxicity, and in vivo transfection efficiency.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Moein Dehbashi ◽  
Zohreh Hojati ◽  
Majid Motovali-bashi ◽  
Mazdak Ganjalikhani-Hakemi ◽  
Akihiro Shimosaka ◽  
...  

AbstractCancer recurrence presents a huge challenge in cancer patient management. Immune escape is a key mechanism of cancer progression and metastatic dissemination. CD25 is expressed in regulatory T (Treg) cells including tumor-infiltrating Treg cells (TI-Tregs). These cells specially activate and reinforce immune escape mechanism of cancers. The suppression of CD25/IL-2 interaction would be useful against Treg cells activation and ultimately immune escape of cancer. Here, software, web servers and databases were used, at which in silico designed small interfering RNAs (siRNAs), de novo designed peptides and virtual screened small molecules against CD25 were introduced for the prospect of eliminating cancer immune escape and obtaining successful treatment. We obtained siRNAs with low off-target effects. Further, small molecules based on the binding homology search in ligand and receptor similarity were introduced. Finally, the critical amino acids on CD25 were targeted by a de novo designed peptide with disulfide bond. Hence we introduced computational-based antagonists to lay a foundation for further in vitro and in vivo studies.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii98-ii98
Author(s):  
Anne Marie Barrette ◽  
Alexandros Bouras ◽  
German Nudelman ◽  
Zarmeen Mussa ◽  
Elena Zaslavsky ◽  
...  

Abstract Glioblastoma (GBM) remains an incurable disease, in large part due to its malignant infiltrative spread, and current clinical therapy fails to target the invasive nature of tumor cells in disease progression and recurrence. Here, we use the YAP-TEAD inhibitor Verteporfin to target a convergence point for regulating tumor invasion/metastasis and establish the robust anti-invasive therapeutic efficacy of this FDA-approved drug and its survival benefit across several preclinical glioma models. Using patient-derived GBM cells and orthotopic xenograft models (PDX), we show that Verteporfin treatment disrupts YAP/TAZ-TEAD activity and processes related to cell adhesion, migration and epithelial-mesenchymal transition. In-vitro, Verteporfin impairs tumor migration, invasion and motility dynamics. In-vivo, intraperitoneal administration of Verteporfin in mice with orthotopic PDX tumors shows consistent drug accumulation within the brain and decreased infiltrative tumor burden, across three independent experiments. Interestingly, PDX tumors with impaired invasion after Verteporfin treatment downregulate CDH2 and ITGB1 adhesion protein levels within the tumor microenvironment. Finally, Verteporfin treatment confers survival benefit in two independent PDX models: as monotherapy in de-novo GBM and in combination with standard-of-care chemoradiation in recurrent GBM. These findings indicate potential therapeutic value of this FDA-approved drug if repurposed for GBM patients.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Nan Huang ◽  
Chang Xu ◽  
Liang Deng ◽  
Xue Li ◽  
Zhixuan Bian ◽  
...  

AbstractPhosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Giuseppe Sautto ◽  
Nicasio Mancini ◽  
Giacomo Gorini ◽  
Massimo Clementi ◽  
Roberto Burioni

More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminaryin vitroandin vivomodels of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.


e-Neuroforum ◽  
2007 ◽  
Vol 13 (4) ◽  
Author(s):  
Lars Fester ◽  
Janine Prange-Kiel ◽  
Gabriele M. Rune

ZusammenfassungUnsere Untersuchungen der letzten Jahre haben gezeigt, dass nicht das Ovar die Quelle für Estrogen induzierte synaptische Plastizität im Hippokampus ist, sondern dieses aus dem Hippokampus selber stammt und haben damit einen Paradigmawechsel eingeleitet, der Estrogen als Neuromodulator unabhängig vom Geschlecht identifiziert. Hippokampale Neurone von Ratten beiderlei Geschlechts sind in der Lage, aus Cholesterol Estrogene de novo zu synthetisieren. Diese hippokampale Estrogensynthese ist sowohl für den Erhalt von Spinesynapsen in vivo als auch in vitro essenziell. Die Hemmung der Estrogensynthese zieht einen Synapsenverlust nach sich und Langzeitpotenzierung ist nicht mehr induzierbar. Die Effekte von hippokampalem Estrogen sind auto-/parakriner Natur, die über die bekannten Estrogenrezeptor-Subtypen, ERα und ERβ, vermittelt werden. Die Regulation der hippokampalen Estrogensynthese erfolgt über GnRH und erklärt die Korrelation der Spinesynapsendichte mit dem weiblichen genitalen Zyklus, die für den Hippokampus spezifisch ist.


2012 ◽  
Vol 16 (01) ◽  
pp. 114-121 ◽  
Author(s):  
Tapan K. Saha ◽  
Yutaka Yoshikawa ◽  
Hirouki Yasui ◽  
Hiromu Sakurai

We prepared [meso-tetrakis(4-carboxylatophenyl)porphyrinato]oxovanadium(IV) tetrasodium, ([VO(tcpp)]Na4), and investigated its in vitro insulin-mimetic activity and in vivo metallokinetic feature in healthy rats. The results were compared with those of previously proposed insulin-mimetic oxovanadium(IV)porphyrin complexes and oxovanadium(IV) sulphate. The in vitro insulin-mimetic activity and bioavailability of [VO(tcpp)]Na4 were considerably better than those of [meso-tetrakis (1-methylpyridinium-4-yl)porphyrinato]oxovanadium(IV)(4+) tetraperchlorate ([VO(tmpyp)](ClO4)4) and oxovanadium(IV) sulphate. On the other hand, [VO(tcpp)]Na4 and [meso-tetrakis(4-sulfonatophenyl) porphyrinato]oxidovanadate(IV)(4-)([VO(tpps)]) showed very similar in vitro insulin-mimetic activity and in vivo metallokinetic feature in healthy rats. In particular, the order of in vitro insulin-mimetic activity of the complexes was determined to be: [VO(tcpp)]Na4 ≈ [VO(tpps)] > ([VO(tmpyp)](ClO4)4 > oxovanadium(IV) sulphate.


Sign in / Sign up

Export Citation Format

Share Document