A Theoretical Model For Predicting The Surface Topography of Inhomogeneous Materials After Shot Peening

Author(s):  
BingBing Wang ◽  
HaiKuan Chen ◽  
GuangTao Xu ◽  
JianWei Zhang ◽  
MingHao Zhao

Abstract Shot peening is widely used in engineering as a classical strengthening process. Although many studies on shot peening have been done, most have focused on homogeneous target materials. In this paper, a theoretical model is proposed for predicting the surface morphology of inhomogeneous target materials. The topography of target materials after single-shot impact is calculated on the basis of energy conservation and Hertz contact theory, and the final three-dimensional surface topography after multiple-shot impact is obtained through superposition. Single-shot and random multiple-shot finite element models are used to show the advantages of the proposed model over the existing theoretical model for homogeneous target materials. The roughness is found to increase with the shot velocity and shot radius.

Author(s):  
C F Lugora ◽  
A N Bramley

In this series of papers, a theoretical model based on the upper bound elemental technique is presented for prediction of forging load and metal flow in three-dimensional closed-die forging processes. Three basic elements are introduced in order to partition a forging into simple elementary regions. An optimum velocity distribution within the forging is obtained by minimizing the total rate of energy dissipation using a simplex optimizing procedure. Applications of the proposed model are discussed in Part 2.


2009 ◽  
Vol 79-82 ◽  
pp. 1189-1192
Author(s):  
Hong Wei Zhang ◽  
Yi Du Zhang ◽  
Qiong Wu

Shot peening is a complex cold working process used to improve the fatigue life of metallic parts. This investigation is devoted to the modeling and simulation of the residual stress field resulting from the shot peening process, in which the finite element method was employed using a rate sensitive material. The history of energies during explicit dynamic analysis was discussed and the solution time for explicit analysis was analyzed. For the single shot impact model, the effect of shot velocity, shot size, incident angle was studied. In addition, the effect of repeated impacts on the residual stress within the target plate was studied. Furthermore, the multiple shot impacts of shot peening process were accomplished and the effect of peening coverage was investigated based on different shot models.


2020 ◽  
Vol 11 (1) ◽  
pp. 305
Author(s):  
Rubén Escribano-García ◽  
Marina Corral-Bobadilla ◽  
Fátima Somovilla-Gómez ◽  
Rubén Lostado-Lorza ◽  
Ash Ahmed

The dimensions and weight of machines, structures, and components that need to be transported safely by road are growing constantly. One of the safest and most widely used transport systems on the road today due to their versatility and configuration are modular trailers. These trailers have hydraulic pendulum axles that are that are attached in pairs to the rigid platform above. In turn, these modular trailers are subject to limitations on the load that each axle carries, the tipping angle, and the oil pressure of the suspension system in order to guarantee safe transport by road. Optimizing the configuration of these modular trailers accurately and safely is a complex task. Factors to be considered include the load’s characteristics, the trailer’s mechanical properties, and road route conditions including the road’s slope and camber, precipitation and direction, and force of the wind. This paper presents a theoretical model that can be used for the optimal configuration of hydraulic cylinder suspension of special transport by road using modular trailers. It considers the previously mentioned factors and guarantees the safe stability of road transport. The proposed model was validated experimentally by placing a nacelle wind turbine at different points within a modular trailer. The weight of the wind turbine was 42,500 kg and its dimensions were 5133 × 2650 × 2975 mm. Once the proposed model was validated, an optimization algorithm was employed to find the optimal center of gravity for load, number of trailers, number of axles, oil pressures, and hydraulic configuration. The optimization algorithm was based on the iterative and automatic testing of the proposed model for different positions on the trailer and different hydraulic configurations. The optimization algorithm was tested with a cylindrical tank that weighed 108,500 kg and had dimensions of 19,500 × 3200 × 2500 mm. The results showed that the proposed model and optimization algorithm could safely optimize the configuration of the hydraulic suspension of modular trailers in special road transport, increase the accuracy and reliability of the calculation of the load configuration, save time, simplify the calculation process, and be easily implemented.


Author(s):  
Yariv Itzkovich ◽  
Ella Barhon ◽  
Rachel Lev-Wiesel

This article constructs a comprehensive theoretical model that outlines bystanders’ emotional and behavioral responses to the mistreatment of adolescent peers. The model captures bystanders’ risk and health risk behaviors, which have been overlooked in the context of their reactions; when addressed at all in connection with bystanders of bullying among adolescents, they have been treated separately. Here, we present bystanders’ emotional and cognitive reactions and their impact on bystanders’ responses including a set of responses that demonstrate risk and health risk behaviors that are directed to the bystander as a victim by proxy. The theoretical framework is the conservation of resources theory, which posits that personal resources (i.e., potency and moral disengagement) and social resources impact the process that leads to bystanders’ reactions. Previous models have overlooked the integrative viewpoint of bystanders, and comprehensive models that explain bystanders’ behavioral and emotional responses have received little attention especially with regards to adolescents. Two recent models overlooked core features embedded in the current model, including the risk and health risk behaviors that it integrates. The proposed model presents a novel and more comprehensive view of bystanders’ reactions and the process underlying these reactions. It integrates existing knowledge embedded in other existing models. At the same time, this perspective indicates the centricity of potency as a key resource that dictates the emotional response and behaviors of bystanders. This potentially allows for new applications in the mitigation of adverse impacts that follow the witnessing of mistreatment. The article discusses these applications, which are based on previous findings, their implications for practice, and directions for future empirical research necessary to validate the model.


2020 ◽  
Vol 11 (1) ◽  
pp. 301
Author(s):  
Sławomir Paśko ◽  
Wojciech Glinkowski

Scoliosis is a three-dimensional trunk and spinal deformity. Patient evaluation is essential for the decision-making process and determines the selection of specific and adequate treatment. The diagnosis requires a radiological evaluation that exposes patients to radiation. This exposure reaches hazardous levels when numerous, repetitive radiographic studies are required for diagnostics, monitoring, and treatment. Technological improvements in radiographic devices have significantly reduced radiation exposure, but the risk for patients remains. Optical three-dimensional surface topography (3D ST) measurement systems that use surface topography (ST) to screen, diagnose, and monitor scoliosis are safer alternatives to radiography. The study aimed to show that the combination of plain X-ray and 3D ST scans allows for an approximate presentation of the vertebral column spinous processes line in space to determine the shape of the spine’s deformity in scoliosis patients. Twelve patients diagnosed with scoliosis, aged 13.1 ± 4.5 years (range: 9 to 20 years) (mean: Cobb angle 17.8°, SD: ±9.5°) were enrolled in the study. Patients were diagnosed using full-spine X-ray and whole torso 3D ST. The novel three-dimensional assessment of the spinous process lines by merging 3D ST and X-ray data in patients with scoliosis was implemented. The method’s expected uncertainty is less than 5 mm, which is better than the norm for a standard measurement tool. The presented accuracy level is considered adequate; the proposed solution is accurate enough to monitor the changes in the shape of scoliosis’s spinous processes line. The proposed method allows for a relatively precise calculation of the spinous process lines based on a three-dimensional point cloud obtained with a four-directional, three-dimensional structured light diagnostic system and a single X-ray image. The method may help reduce patients’ total radiation exposure and avoid one X-ray in the sagittal projection if biplanar radiograms are required for reconstructing the three-dimensional line of the spinous processes line.


2021 ◽  
pp. 108128652110258
Author(s):  
Yi-Ying Feng ◽  
Xiao-Jun Yang ◽  
Jian-Gen Liu ◽  
Zhan-Qing Chen

The general fractional operator shows its great predominance in the construction of constitutive model owing to its agility in choosing the embedded parameters. A generalized fractional viscoelastic–plastic constitutive model with the sense of the k-Hilfer–Prabhakar ( k-H-P) fractional operator, which has the character recovering the known classical models from the proposed model, is established in this article. In order to describe the damage in the creep process, a time-varying elastic element [Formula: see text] is used in the proposed model with better representation of accelerated creep stage. According to the theory of the kinematics of deformation and the Laplace transform, the creep constitutive equation and the strain of the modified model are established and obtained. The validity and rationality of the proposed model are identified by fitting with the experimental data. Finally, the influences of the fractional derivative order [Formula: see text] and parameter k on the creep process are investigated through the sensitivity analyses with two- and three-dimensional plots.


2014 ◽  
Vol 490-491 ◽  
pp. 600-606
Author(s):  
Jie Qiong Lin ◽  
Jin Guo Han ◽  
Dan Jing ◽  
Xian Jing

Elliptical vibration cutting (EVC) process and three dimensional cutting surfaces are analyzed in this paper to understand the formation of surface topography. The model of EVC surface topography is established based on curved surface remove function under the assumption that the tool edge is sharp enough. And simulation analysis of surface topography is conducted with different feed offset ratios. Results indicate that RMS change with feed offset ratios λ. The range of RMS is larger when feed offset ratio ranges from both 0 to 0.4 and 0.6 to 1, while the range is smaller when feed offset ratio changes from 0.4 to 0.6. Whats more, RMS reaches the minimum when feed offset ratio is 0.5. The present research provides some references for reducing the height of vibration ripples and improving EVC surface quality.


2002 ◽  
Vol 124 (4) ◽  
pp. 953-957 ◽  
Author(s):  
D. Lornage ◽  
E. Chatelet ◽  
G. Jacquet-Richardet

Rotating parts of turbomachines are generally studied using different uncoupled approaches. For example, the dynamic behavior of shafts and wheels are considered independently and the influence of the surrounding fluid is often taken into account in an approximate way. These approaches, while often sufficiently accurate, are questionable when wheel-shaft coupling is observed or when fluid elements are strongly coupled with local structural deformations (leakage flow between wheel and casing, fluid bearings mounted on a thin-walled shaft, etc.). The approach proposed is a step toward a global model of shaft lines. The whole flexible wheel-shaft assembly and the influence of specific fluid film elements are considered in a fully three-dimensional model. In this paper, the proposed model is first presented and then applied to a simple disk-shaft assembly coupled with a fluid film clustered between the disk and a rigid casing. The finite element method is used together with a modal reduction for the structural analysis. As thin fluid films are considered, the Reynolds equation is solved using finite differences in order to obtain the pressure field. Data are transferred between structural and fluid meshes using a general method based on an interfacing grid concept. The equations governing the whole system are solved within a time-marching procedure. The results obtained show significant influence of specific three-dimensional features such as disk-shaft coupling and local disk deformations on global behavior.


Sign in / Sign up

Export Citation Format

Share Document