scholarly journals Dynamics and Stability of Magnetic-air Hybrid Quasi-zero Stiffness Vibration Isolation System

Author(s):  
Youliang Jiang ◽  
Chunsheng Song ◽  
Xin Ma ◽  
Han Wu ◽  
Zhihui Mai

Abstract With the improvement of machining accuracy, external low frequency vibration has become one of the most important factors affecting the performance of equipment. The theory of quasi-zero stiffness vibration isolation shows favorable low frequency vibration isolation effect. Based on our previous research on the structure of magnetic-air hybrid quasi-zero stiffness vibration isolation system, the nonlinear mechanical expression of positive and negative stiffness structure has been analyzed in this paper, to improve application of the system and provide a theoretical basis for sequential studies of active control. To analyze the judgement criterion of the quasi-zero stiffness, an accurate mechanical model was first established. Then, the dynamical model based on external low frequency vibration was developed, to investigate the stability and natural frequency and deduce the amplitude frequency characteristics and displacement transfer rate. Finally, we carried out simulation and experimental analysis to verify the stiffness of high static and low dynamic and the low frequency vibration isolation effect of the vibration isolation system.

2013 ◽  
Vol 397-400 ◽  
pp. 295-303 ◽  
Author(s):  
Fu Niu ◽  
Ling Shuai Meng ◽  
Wen Juan Wu ◽  
Jing Gong Sun ◽  
Wei Hua Su ◽  
...  

The quasi-zero-stiffness vibration isolation system has witnessed significant development due to the pressing demands for low frequency and ultra-low frequency vibration isolation. In this study, the isolation theory and the characteristic of the quasi-zero-stiffness vibration isolation system are illustrated. Based on its implementation mechanics, a comprehensive assessment of recent advances of the quasi-zero-stiffness vibration isolation system is presented. The future research directions are finally prospected.


2012 ◽  
Vol 248 ◽  
pp. 475-480
Author(s):  
Guan Jun Zhang ◽  
Xiang Zhu ◽  
Ran Xu ◽  
Tian Yun Li

Recently, the Euler strut is used as the supporting spring in the low frequency isolation. An Euler spring is a column or strut of steel material which is compressed elastically beyond its buckling load, which makes the ratio of the isolated mass to the mass of the supporting spring maximum, and greatly increasing the internal resonant frequencies of the isolator. In this research, the unique mechanical properties and the expressions of the displacement transmissibility of the Euler strut are deduced. The influences of structural parameters of the strut on the stiffness and vibration isolation characteristics are investigated in detail. The results show that the Euler strut has the potential in low frequency vibration isolation, and the length and breadth of the strut can influence the stiffness, transmissibility and critical loading mass respectively.


2019 ◽  
Vol 38 (2) ◽  
pp. 608-614 ◽  
Author(s):  
M Jurevicius ◽  
V Vekteris ◽  
V Turla ◽  
A Kilikevicius ◽  
G Viselga

In this study, the theoretical and experimental investigations of the dynamics of complex passive low-frequency vibration systems are described. It is shown that a complex system consisting of a vibrating platform, an optical table and a vibration isolation system of quasi-zero stiffness loaded by a certain mass may isolate low-frequency vibrations in a narrow frequency range only. In another case, the system does not isolate vibrations; it even operates as an amplifier. The frequencies that ensure the top efficiency of the vibration damping system of quasi-zero stiffness were established.


2019 ◽  
Vol 38 (2) ◽  
pp. 684-691
Author(s):  
M Jurevicius ◽  
V Vekteris ◽  
G Viselga ◽  
V Turla ◽  
A Kilikevicius ◽  
...  

The paper describes an establishment of dynamic characteristics of the newly created passive mechanical system for isolation of low-frequency (0.7 Hz–50 Hz) vibrations. The many metrological means are sensitive to mechanical vibrations and acoustic noise of low frequency. Such may appear both outside and inside a building, i.e. may be caused by wind, heating, aeration, air conditioning equipment, moving vehicles and other. In the paper, description of the theoretical and experimental tests is provided. The obtained dynamic characteristics (transmissibilities) of the passive mechanical low-frequency vibration isolation system show that such a system is able to isolate vibrations effectively in the frequency range of 0.7 Hz–50 Hz. The results of the experimental tests support the results of the theoretical research.


2012 ◽  
Vol 30 (6) ◽  
pp. 063201 ◽  
Author(s):  
Katsuya Iwaya ◽  
Ryota Shimizu ◽  
Akira Teramura ◽  
Seiji Sasaki ◽  
Toru Itagaki ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 316-320
Author(s):  
Xiang Jun Kong ◽  
Er Ming Song ◽  
Chang Zheng Chen

Isolation system of the heat water pumps can be simplified as a double sources exciting and double output double-deck vibration isolation system model, expressions of transmitted power flow and vibration speed to the basement are deduced based on the double sources exciting and double output double-deck vibration isolation system electric-force(E-F) analog picture, the curves of power flow and vibration speed transmitted to basement how the upper deck vibration isolation and intermediate mass effect are drawn by using mat lab program. The results show that the adjusting the upper deck vibration isolation stiffness parameters has little effect on the amplitude of vibration power flow, increasing intermediate mass can move first peak to the low frequency, increasing intermediate mass can obviously reduce t transmitted power flow and transmitted vibration speed amplitude to the basement.


2021 ◽  
pp. 13-17
Author(s):  
D. V. Sitnikov ◽  
◽  
A. A. Burian ◽  

The paper considers a vibration isolation system, in which a force is applied to the moving mass of the active dynamic vibration damper by an actuator in proportion to the measured value of the base response. The amplitude-frequency and impulse characteristics are plotted depending on the parameters of the system, assuming the actuator without distortion generates the force proportional to the base response. It is shown that the considered vibration isolation system is quite effective in the low-frequency region, including in the resonance region of the passive system, both in stationary and nonstationary modes of vibroactive forces


2017 ◽  
Vol 865 ◽  
pp. 480-485
Author(s):  
Jian Liang Li ◽  
Xiao Xi Liu ◽  
Shu Qing Li ◽  
Zhi Fei Tao ◽  
Lei Ma

The research mainly focuses on the performance of the controllable hypocenter in the low frequency band. The hybrid vibration isolation method based on the disturbance observer PID control algorithm is used to improve the excitation signal quality. Based on the analysis of the structure and working principle of vibration isolator, the physical model and mathematical model are established, and the simulation test of ZK-5VIC virtual test vibration and control system is carried out. The experimental platform of hybrid vibration isolation system with low frequency interference is set up. The experiment of excitation and acquisition of low frequency signal is carried out, which provides the theoretical basis and guarantee for the vibration isolation technology in the low frequency range below 3Hz.


1994 ◽  
Author(s):  
Robin T. Stebbins ◽  
David Newell ◽  
Sam N. Richman ◽  
Peter L. Bender ◽  
James E. Faller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document