scholarly journals Rostral Anterior Cingulate Activations Inversely Relate To Reward Payoff Maximation & Predict Depressed Mood

Author(s):  
Pragathi Priyadharsini Balasubramani ◽  
Juan Diaz-Delgado ◽  
Gillian Grennan ◽  
Fahad Alim ◽  
Mariam Zafar-Khan ◽  
...  

Abstract Choice selection strategies and decision making are typically investigated using multiple-choice gambling paradigms that require participants to maximize reward payoff. However, research shows that performance in such paradigms suffers from individual biases towards the frequency of gains to choose smaller local gains over larger longer term gain, also referred to as melioration. Here, we developed a simple two-choice reward task, implemented in 186 healthy human adult subjects across the adult lifespan to understand the behavioral, computational, and neural bases of payoff maximization versus melioration. The observed reward choice behavior on this task was best explained by a reinforcement learning model of differential future reward prediction. Simultaneously recorded and source-localized electroencephalography (EEG) showed that diminished theta-band activations in the right rostral anterior cingulate cortex (rACC) correspond to greater reward payoff maximization, specifically during the presentation of cumulative reward information at the end of each task trial. Notably, these activations (greater rACC theta) predicted self-reported depressed mood symptoms, thereby showcasing a reward processing marker of potential clinical utility.

2021 ◽  
Author(s):  
Pragathi Priyadharsini Balasubramani ◽  
Juan Diaz-Delgado ◽  
Gillian Grennan ◽  
Mariam Zafar-Khan ◽  
Fahad Alim ◽  
...  

Humans make choices based on both reward magnitude and reward frequency. Probabilistic decision making is popularly tested using multi-choice gambling paradigms that require participants to maximize task payoff. However, research shows that performance in such paradigms suffers from individual bias towards the frequency of gains as well as individual differences that mediate reinforcement learning, including attention to stimuli, sensitivity to rewards and risks, learning rate, and exploration vs. exploitation based executive policies. Here, we developed a two-choice reward task, implemented in 186 healthy human subjects across the adult lifespan, to understand the cognitive and neural basis of payoff-based performance. We controlled for individual gain frequency biases using experimental block manipulations and modeled individual differences in reinforcement learning parameters. Simultaneously recorded electroencephalography (EEG)-based cortical activations showed that diminished theta activity in the right rostral anterior cingulate cortex (ACC) as well as diminished beta activity in the right parsorbitalis region of the inferior frontal cortex (IFC) during cumulative reward presentation correspond to better payoff performance. These neural activations further associated with specific symptom self-reports for depression (greater ACC theta) and inattention (greater IFC beta), suggestive of reward processing markers of clinical utility.


2019 ◽  
pp. 145-164
Author(s):  
Edmund T. Rolls

The medial orbitofrontal cortex projects reward-related information to the pregenual cingulate cortex, and the lateral orbitofrontal cortex projects punishment and non-reward information to the supracallosal anterior cingulate cortex. These projections provide the reward outcome information needed for action-outcome goal value dependent instrumental learning by the cingulate cortex. The orbitofrontal cortex also projects reward-related information to the striatum for stimulus-response habit learning. Via the striatal route, and further in part via the habenula, the orbitofrontal cortex provides information about rewards and non-rewards that reached the brainstem dopamine neurons, some of which respond to positive reward prediction error, and the serotonin (5HT) neurons. The orbitofrontal cortex is therefore perhaps the key brain region involved in reward processing in the brain. The orbitofrontal cortex also has projections that can influence autonomic function, in part via the insula.


Author(s):  
Milena Radoman ◽  
Lynne Lieberman ◽  
Jagan Jimmy ◽  
Stephanie M Gorka

Abstract Temporally unpredictable stimuli influence behavior across species, as previously demonstrated for sequences of simple threats and rewards with fixed or variable onset. Neuroimaging studies have identified a specific frontolimbic circuit that may become engaged during the anticipation of temporally unpredictable threat (U-threat). However, the neural mechanisms underlying processing of temporally unpredictable reward (U-reward) are incompletely understood. It is also unclear whether these processes are mediated by overlapping or distinct neural systems. These knowledge gaps are noteworthy given that disruptions within these neural systems may lead to maladaptive response to uncertainty. Here, using functional magnetic resonance imaging data from a sample of 159 young adults, we showed that anticipation of both U-threat and U-reward elicited activation in the right anterior insula, right ventral anterior nucleus of the thalamus and right inferior frontal gyrus. U-threat also activated the right posterior insula and dorsal anterior cingulate cortex, relative to U-reward. In contrast, U-reward elicited activation in the right fusiform and left middle occipital gyrus, relative to U-threat. Although there is some overlap in the neural circuitry underlying anticipation of U-threat and U-reward, these processes appear to be largely mediated by distinct circuits. Future studies are needed to corroborate and extend these preliminary findings.


SLEEP ◽  
2021 ◽  
Author(s):  
Ernesto Sanz-Arigita ◽  
Yannick Daviaux ◽  
Marc Joliot ◽  
Bixente Dilharreguy ◽  
Jean-Arthur Micoulaud-Franchi ◽  
...  

Abstract Study objectives Emotional reactivity to negative stimuli has been investigated in insomnia, but little is known about emotional reactivity to positive stimuli and its neural representation. Methods We used 3T fMRI to determine neural reactivity during the presentation of standardized short, 10-40-s, humorous films in insomnia patients (n=20, 18 females, aged 27.7 +/- 8.6 years) and age-matched individuals without insomnia (n=20, 19 females, aged 26.7 +/- 7.0 years), and assessed humour ratings through a visual analogue scale (VAS). Seed-based functional connectivity was analysed for left and right amygdala networks: group-level mixed-effects analysis (FLAME; FSL) was used to compare amygdala connectivity maps between groups. Results fMRI seed-based analysis of the amygdala revealed stronger neural reactivity in insomnia patients than in controls in several brain network clusters within the reward brain network, without humour rating differences between groups (p = 0.6). For left amygdala connectivity, cluster maxima were in the left caudate (Z=3.88), left putamen (Z=3.79) and left anterior cingulate gyrus (Z=4.11), while for right amygdala connectivity, cluster maxima were in the left caudate (Z=4.05), right insula (Z=3.83) and left anterior cingulate gyrus (Z=4.29). Cluster maxima of the right amygdala network were correlated with hyperarousal scores in insomnia patients only. Conclusions Presentation of humorous films leads to increased brain activity in the neural reward network for insomnia patients compared to controls, related to hyperarousal features in insomnia patients, in the absence of humor rating group differences. These novel findings may benefit insomnia treatment interventions.


Author(s):  
Brandon Gunasekera ◽  
Kelly Diederen ◽  
Sagnik Bhattacharyya

Abstract Background Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. Aims We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. Methods This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis Results There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. Conclusions There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.


1996 ◽  
Vol 16 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Norihiro Sadato ◽  
Vicente Ibañez ◽  
Marie-Pierre Deiber ◽  
Gregory Campbell ◽  
Marc Leonardo ◽  
...  

To study the effect of the repetition rate of a simple movement on the distribution and magnitude of neuronal recruitment, we measured regional CBF (rCBF) in eight normal volunteers, using positron emission tomography and 15O-labeled water. An auditory-cued, repetitive flexion movement of the right index finger against the thumb was performed at very slow (0.25 and 0.5 Hz), slow (0.75 and 1 Hz), fast (2 and 2.5 Hz), and very fast (3 and 4 Hz) rates. The increase of rCBF during movement relative to the resting condition was calculated for each pair of movement conditions. Left primary sensorimotor cortex showed no significant activation at the very slow rates. There was a rapid rise of rCBF between the slow and the fast rates, but no further increase at the very fast rates. The right cerebellum showed similar changes. Changes in the left primary sensorimotor cortex and the cerebellum likely reflect the effect of the movement rate. The posterior supplementary motor area (SMA) showed its highest activation at the very slow rates but no significant activation at the very fast rates. Changes correlating with those in the SMA were found in the anterior cingulate gyrus, right prefrontal area, and right thalamus. The decreases in CBF may reflect a progressive change in performance from reactive to predictive.


2005 ◽  
Vol 94 (1) ◽  
pp. 512-518 ◽  
Author(s):  
A. Floyer-Lea ◽  
P. M. Matthews

The acquisition of a new motor skill is characterized first by a short-term, fast learning stage in which performance improves rapidly, and subsequently by a long-term, slower learning stage in which additional performance gains are incremental. Previous functional imaging studies have suggested that distinct brain networks mediate these two stages of learning, but direct comparisons using the same task have not been performed. Here we used a task in which subjects learn to track a continuous 8-s sequence demanding variable isometric force development between the fingers and thumb of the dominant, right hand. Learning-associated changes in brain activation were characterized using functional MRI (fMRI) during short-term learning of a novel sequence, during short-term learning after prior, brief exposure to the sequence, and over long-term (3 wk) training in the task. Short-term learning was associated with decreases in activity in the dorsolateral prefrontal, anterior cingulate, posterior parietal, primary motor, and cerebellar cortex, and with increased activation in the right cerebellar dentate nucleus, the left putamen, and left thalamus. Prefrontal, parietal, and cerebellar cortical changes were not apparent with short-term learning after prior exposure to the sequence. With long-term learning, increases in activity were found in the left primary somatosensory and motor cortex and in the right putamen. Our observations extend previous work suggesting that distinguishable networks are recruited during the different phases of motor learning. While short-term motor skill learning seems associated primarily with activation in a cortical network specific for the learned movements, long-term learning involves increased activation of a bihemispheric cortical-subcortical network in a pattern suggesting “plastic” development of new representations for both motor output and somatosensory afferent information.


2008 ◽  
Vol 20 (2) ◽  
pp. 342-355 ◽  
Author(s):  
Tomoyo Morita ◽  
Shoji Itakura ◽  
Daisuke N. Saito ◽  
Satoshi Nakashita ◽  
Tokiko Harada ◽  
...  

Individuals can experience negative emotions (e.g., embarrassment) accompanying self-evaluation immediately after recognizing their own facial image, especially if it deviates strongly from their mental representation of ideals or standards. The aim of this study was to identify the cortical regions involved in self-recognition and self-evaluation along with self-conscious emotions. To increase the range of emotions accompanying self-evaluation, we used facial feedback images chosen from a video recording, some of which deviated significantly from normal images. In total, 19 participants were asked to rate images of their own face (SELF) and those of others (OTHERS) according to how photogenic they appeared to be. After scanning the images, the participants rated how embarrassed they felt upon viewing each face. As the photogenic scores decreased, the embarrassment ratings dramatically increased for the participant's own face compared with those of others. The SELF versus OTHERS contrast significantly increased the activation of the right prefrontal cortex, bilateral insular cortex, anterior cingulate cortex, and bilateral occipital cortex. Within the right prefrontal cortex, activity in the right precentral gyrus reflected the trait of awareness of observable aspects of the self; this provided strong evidence that the right precentral gyrus is specifically involved in self-face recognition. By contrast, activity in the anterior region, which is located in the right middle inferior frontal gyrus, was modulated by the extent of embarrassment. This finding suggests that the right middle inferior frontal gyrus is engaged in self-evaluation preceded by self-face recognition based on the relevance to a standard self.


Cephalalgia ◽  
2017 ◽  
Vol 38 (7) ◽  
pp. 1245-1256 ◽  
Author(s):  
Eleonora Vecchio ◽  
Eleonora Gentile ◽  
Giovanni Franco ◽  
Katia Ricci ◽  
Marina de Tommaso

Background Transcutaneous external supraorbital nerve stimulation has emerged as a treatment option for primary headache disorders, though its action mechanism is still unclear. Study aim In this randomized, sham-controlled pilot study we aimed to test the effects of a single external transcutaneous nerve stimulation session on pain perception and cortical responses induced by painful laser stimuli delivered to the right forehead and the right hand in a cohort of migraine without aura patients and healthy controls. Methods Seventeen migraine without aura patients and 21 age- and sex-matched controls were selected and randomly assigned to a real or sham external transcutaneous nerve stimulation single stimulation session. The external transcutaneous nerve stimulation was delivered with a self-adhesive electrode placed on the forehead and generating a 60 Hz pulse at 16 mA intensity for 20 minutes. For sham stimulation, we used 2 mA intensity. Laser evoked responses were recorded from 21 scalp electrodes in basal condition (T0), during external transcutaneous nerve stimulation and sham stimulation (T1), and immediately after these (T2). The laser evoked responses were analyzed by LORETA software. Results The real external transcutaneous nerve stimulation reduced the trigeminal N2P2 amplitude in migraine and control groups significantly in respect to placebo. The real stimulation was associated with lower activity in the anterior cingulate cortex under trigeminal laser stimuli. The pattern of LEP-reduced habituation was reverted by real and sham transcutaneous stimulation in migraine patients. Conclusions The present results could suggest that the external transcutaneous nerve stimulation may interfere with the threshold and the extent of trigeminal system activation, with a mechanism of potential utility in the resolution and prevention of migraine attacks.


Sign in / Sign up

Export Citation Format

Share Document