scholarly journals FLAT PLATE SKIN FRICTION IN LOW DENSITY HYPERSONIC FLOW-PRELIMINARY RESULTS

Author(s):  
E. S. Moulic
2009 ◽  
Vol 41 (2) ◽  
pp. 021406 ◽  
Author(s):  
Kiyoto Mori ◽  
Hiroki Imanishi ◽  
Yoshiyuki Tsuji ◽  
Tomohiro Hattori ◽  
Masaharu Matsubara ◽  
...  

1971 ◽  
Vol 46 (1) ◽  
pp. 165-175 ◽  
Author(s):  
Hiroshi Ishigaki

The time-mean skin friction of the laminar boundary layer on a flat plate which is fixed at zero incidence in a fluctuating stream is investigated analytically. Flow oscillation amplitude outside the boundary layer is assumed constant along the surface. First, the small velocity-amplitude case is treated, and approximate formulae are obtained in the extreme cases when the frequency is low and high. Next, the finite velocity-amplitude case is treated under the condition of high frequency, and it is found that the formula obtained for the small-amplitude and high-frequency case is also valid. These results show that the increase of the mean skin friction reduces with frequency and is ultimately inversely proportional to the square of frequency.The corresponding energy equation is also studied simultaneously under the condition of zero heat transfer between the fluid and the surface. It is confirmed that the time-mean surface temperature increases with frequency and tends to be proportional to the square root of frequency. Moreover, it is shown that the timemean recovery factor can be several times as large as that without flow oscillation.


2010 ◽  
Vol 5 (3) ◽  
pp. 38-46
Author(s):  
Vladimir I. Kornilov ◽  
Andrey V. Boiko

The effect of air microblowing through a porous wall on the properties of a turbulent boundary layer formed on a flat plate in an incompressible flow is studied experimentally. The Reynolds number based on the momentum thickness of the boundary layer in front of the porous insert is 3 900. The mass flow rate of the blowing air per unit area was varied within Q = 0−0.0488 кg/s/m2 . A consistent decrease in local skin friction, reaching up to 45−47 %, is observed to occur at the maximal blowing air mass flow rate studied.


2018 ◽  
Vol 7 (3) ◽  
pp. 205-217 ◽  
Author(s):  
Ying Zhou ◽  
Hong Wu ◽  
Yulong Li ◽  
Yi Cai

Sign in / Sign up

Export Citation Format

Share Document