MECHANICAL PROPERTIES OF HIGHLY FILLED ELASTOMERS VIII. RUPTURE PROPERTIES OF THE COMPOSITE SYSTEM POLYURETHANE RUBBER-SODIUM CHLORIDE AT ROOM TEMPERATURE

1969 ◽  
Author(s):  
Friedrich R. Schwarzl ◽  
Hendricus W. Bree

In this paper we present computer calculations of the ideal strength of crystals of sodium chloride and argon, for a variety of modes of homogeneous deformation. As models of the interatomic binding we employ the simple, two-body, central-force Born-Mayer and Lennard-Jones potentials respectively. The calculations for argon are appropriate to absolute zero, those for sodium chloride to room temperature. The results indicate a very marked anisotropy of the ideal tensile strength for sodium chloride, with a pronounced minimum at <100>, which is consistent with the observed cleavage on this plane. The ideal tensile strength of argon is shown to be much less dependent on orientation, which accords with the lack of any obvious cleavage plane in this material. We also make some estimates of the ideal shear strength, and find this to be a minimum for {111} <112> shear for both argon and sodium chloride.


1990 ◽  
Vol 194 ◽  
Author(s):  
P. R. Subramanian ◽  
M. G. Mendiratta ◽  
D. B. Miracle ◽  
D. M. Dimiduk

AbstractThe quasibinary NiAI-Mo system exhibits a large two-phase field between NiAl and the terminal (Mo) solid solution, and offers the potential for producing in-situ eutectic composites for high-temperature structural applications. The phase stability of this composite system was experimentally evaluated, following long-term exposures at elevated temperatures. Bend strengths as a function of temperature and room-temperature fracture toughness data are presented for selected NiA1-Mo alloys, together with results from fractography observations.


2007 ◽  
Vol 546-549 ◽  
pp. 1623-1626 ◽  
Author(s):  
Bao Yan Zhang ◽  
Bin Tai Li ◽  
Xiang Bao Chen ◽  
Zheng Gang Zhou

A low temperature cure resin has been prepared successfully by applying self designed/synthesized cure agent and commercial epoxies through slurry mixing process. Low temperature/vacuum bag cure prepreg with excellent drapeability & spreadability and over 10 days storage life at room temperature could be prepared by hot/melt technique. The cure and post cure parameters of manufacturing composites were optimized. The main properties of low temperature/vacuum bag cure composite have been determined. Results indicated that the low temperature/vacuum bag cure composite system had excellent mechanical properties and its long service temperature could reach 80°C. The influence of ultrasonic irradiation applied during the manufacturing process on the properties of the composite was discussed, and results showed that the ultrasonic irradiation improved the properties of composite greatly and suggested a novel strategy to improve the mechanical properties of low temperature cure composite systems.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


Alloy Digest ◽  
1995 ◽  
Vol 44 (5) ◽  

Abstract The Microcast-X process produces a substantially finer grain size that improves mechanical properties in MAR-M-247 with modest negative impact on rupture properties above 1600 F (871 C). This datasheet provides information on composition, microstructureand tensile properties as well as creep and fatigue. It also includes information on casting. Filing Code: Ni-481. Producer or source: Howmet Corporation.


Sign in / Sign up

Export Citation Format

Share Document