Lessons Learned (US Army Depot, Da Nang)

1971 ◽  
Author(s):  
Sherman Weisinger
Keyword(s):  
Author(s):  
Anthony L. Baker ◽  
Sean M. Fitzhugh ◽  
Daniel E. Forster ◽  
Kristin E. Schaefer

The development of more effective human-autonomy teaming (HAT) will depend on the availability of validated measures of their performance. Communication provides a critical window into a team’s interactions, states, and performance, but much remains to be learned about how to successfully carry over communication measures from the human teaming context to the HAT context. Therefore, the purpose of this paper is to discuss the implementation of three communication assessment methodologies used for two Wingman Joint Capabilities Technology Demonstration field experiments. These field experiments involved Soldiers and Marines maneuvering vehicles and engaging in live-fire target gunnery, all with the assistance of intelligent autonomous systems. Crew communication data were analyzed using aggregate communication flow, relational event models, and linguistic similarity. We discuss how the assessments were implemented, what they revealed about the teaming between humans and autonomy, and lessons learned for future implementation of communication measurement approaches in the HAT context.


Author(s):  
Brent Haroldsen ◽  
Jerome Stofleth ◽  
Mien Yip ◽  
Allan Caplan

Code Case 2564 for the design of impulsively loaded vessels was approved in January 2008. In 2010 the US Army Non-Stockpile Chemical Materiel Program, with support from Sandia National Laboratories, procured a vessel per this Code Case for use on the Explosive Destruction System (EDS). The vessel was delivered to the Army in August of 2010 and approved for use by the DoD Explosives Safety Board in 2012. Although others have used the methodology and design limits of the Code Case to analyze vessels, to our knowledge, this was the first vessel to receive an ASME explosive rating with a U3 stamp. This paper discusses lessons learned in the process. Of particular interest were issues related to defining the design basis in the User Design Specification and explosive qualification testing required for regulatory approval. Specifying and testing an impulsively loaded vessel is more complicated than a static pressure vessel because the loads depend on the size, shape, and location of the explosive charges in the vessel and on the kind of explosives used and the point of detonation. Historically the US Department of Defense and Department of Energy have required an explosive test. Currently the Code Case does not address testing requirements, but it would be beneficial if it did since having vetted, third party standards for explosive qualification testing would simplify the process for regulatory approval.


2018 ◽  
Vol 227 (4) ◽  
pp. S185
Author(s):  
Bethany M. Heidenreich ◽  
Daniel J. Sessions ◽  
Diane F. Hale ◽  
Christopher Jordan ◽  
Eric P. Ahnfeldt

Author(s):  
Nancy Kosko ◽  
Janet Gilman ◽  
Debbie White

The US Army, like most US federal and state environmental organizations, is faced with limited resources to conduct environmental work, an increasing workload, and challenges in achieving closeout of its environmental cleanup programs. In 2001, in an effort to incorporate proven private sector tools into federal cleanup programs, the Department of Defense (DoD) Business Initiative Council (BIC), initiated the use of Performance-Based Acquisition (PBA) for environmental cleanup. Since fiscal year 2000, the US Army Environmental Command (USAEC) has successfully awarded more than 55 performance-based contracts for environmental remediation. These contracts range in size from $500,000 to $52.4 million, and include closing properties (Base Realignment and Closure (BRAC)) and some of the US Army’s most complex active installations. The contracts address a range of activities including investigation through monitoring and site completion, as well as various technical challenges including dense non-aqueous phase liquids (DNAPL) in ground water, karst systems, munitions and explosives of concern, and biological agents. The contracts are most often firm-fixed price, and 50 percent of the contracts required contractors to purchase environmental insurance in the form of remediation stop loss insurance (also known as cleanup cost cap insurance). The USAEC has conducted continuous process improvement since inception of the initiative. This paper presents results of two studies that were conducted in 2005–2006 to determine what lessons learned can be applied to future activities and to measure performance of contractors currently executing work under the performance based contracts.


2021 ◽  
Author(s):  
Charles Theiling ◽  
Benjamin McGuire ◽  
Gretchen Benjamin ◽  
Dave Busse ◽  
Jon Hendrickson ◽  
...  

There is a long history of fish and wildlife management associated with Upper Mississippi River navigation dams owned and operated by the US Army Corps of Engineers (USACE). Many operational changes have been made to improve aquatic habitat, with recent emphasis on pool-scale drawdowns to enhance wetland benefits without affecting navigation or other uses. This special report describes projects successfully incorporating Engineering With Nature® principles in a review of the physical setting and historical fish and wildlife habitat management efforts using Upper Mississippi River System navigation dams. We reviewed 80 years of adaptation and lessons learned about how to integrate navigation operations and wildlife management. Several experiments have revealed the capacity to produce thousands of hectares of emergent and submersed aquatic plants, restoring much-needed riparian habitat for a variety of aquatic, wetland, and avian species.


1985 ◽  
Vol 1 (S1) ◽  
pp. 153 ◽  
Author(s):  
William F. McManus

Successful management of a mass casualty situation involving 45 injured marines following a fire in Japan demonstrates the important principles of triage, patient movement, quality patient care, logistics, communication and medical direction.Following the accident, the US Army Institute of Surgical Research assembled a burn team consisting of three surgeons, three nurses, one microbiologist and eleven clinical specialists (three of whom were inhalation therapy technicians) and the equipment and supplies necessary to treat and transport these patients. The US Air Force Military Airlift Command transported the team and equipment to Japan in a C–141 Starlifter Medevac plane and pre-positioned a second C–141 in Japan for the return flight. Additional ventilators and supplies were mobilized from Japan, Okinawa, the Philippines and Alaska.


Water Policy ◽  
2021 ◽  
Vol 23 (S1) ◽  
pp. 156-173
Author(s):  
Lewis E. Link

Abstract A systems perspective is presented of what happened during and after Hurricane Katrina (2005) and the potential for reducing the likelihood of large losses in the future. This work was the basis for the rapid repair of the damage resulting from Katrina and ultimately the development and construction of a new risk reduction system for the region and a major shift in engineering guidance and practice related to public water infrastructure. The work was primarily accomplished through the Interagency Performance Evaluation Task Force (IPET) established by the Chief of Engineers, US Army Corps of Engineers, to conduct a comprehensive forensic analysis of what happened and why, and to an engineering risk and reliability assessment of the hurricane protection system in place when Katrina struck.


Sign in / Sign up

Export Citation Format

Share Document