Microdesigning of Lightweight/High Strength Ceramic Materials

1989 ◽  
Author(s):  
I. A. Aksay ◽  
G. C. Stangle ◽  
D. M. Dabbs ◽  
M. Sarikaya
1994 ◽  
Vol 43 (489) ◽  
pp. 599-605 ◽  
Author(s):  
Akira YAMAKAWA ◽  
Takehisa YAMAMOTO ◽  
Tomoyuki AWAZU ◽  
Kenji MATSUNUMA ◽  
Takao NISHIOKA

2003 ◽  
Vol 68 (6) ◽  
pp. 505-510 ◽  
Author(s):  
Branko Matovic ◽  
Snezana Boskovic ◽  
Mihovil Logar

Local and conventional raw materials?massive basalt from the Vrelo locality on Kopaonik mountain?have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis optical microscopy and other techniques. Various heat treatments were used and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO3)2 and hypersthene ((Mg,Fe)SiO3) were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8?480 ?m with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5?7.5, from 2000?6300 kg/cm2 and from 0.1?0.2 g/cm, respectively.


2020 ◽  
Vol 14 (4) ◽  
pp. 583-589
Author(s):  
Оksana Savvova ◽  
◽  
Hennadiy Voronov ◽  
Оlena Babich ◽  
Oleksii Fesenko ◽  
...  

Relevance of the development of high-strength glass-ceramic coatings obtained by resource-saving technology for protective elements has been established. Structure formation mechanism in magnesium aluminosilicate glasses during heat treatment has been analyzed. Selection of the system was substantiated, model glasses and glass-ceramic materials on its base have been developed. Patterns of structure regularity and formation of the phase composition of glass-ceramic materials during their ceramization have been investigated. It was established that the presence of crystalline phase of mullite after melting leads to formation of the primary crystals and allows the formation of the fine crystalline structure under conditions of the low-temperature heat treatment at the nucleation stage. Developed high-strength glass ceramic materials can be used as a base in creating protective elements for special-purpose vehicles by energy-saving technology.


Author(s):  
Alakesh Manna ◽  
Amandeep Kundal

Advanced ceramic materials are gradually becoming very important for their superior properties such as high hardness, wear resistance, chemical resistance, and high strength to weight ratio. But machining of advanced ceramic like Al2O3-ceramics is very difficult by any well known and common machining processes. Normally, cleavages and triangular fractures generate when machining of these materials is done by traditional machining methods. It is essential to develop an efficient and accurate machining method for processing advanced ceramic materials. For effective machining of Al2O3-ceramics, a traveling wire electrochemical spark machining (TW-ECSM) setup has been developed. The developed TW-ECSM setup has been utilized to machine Al2O3 ceramic materials and subsequently test results are utilized to analyze the machining performance characteristic. Different SEM photographs show the actual condition of the micro machined surfaces. The practical research analysis and test results on the machining of Al2O3 ceramics by developed TWECSM setup will provide a new guideline to the researchers and manufacturing engineers.


Author(s):  
Alakesh Manna ◽  
Amandeep Kundal

Advanced ceramic materials are gradually becoming very important for their superior properties such as high hardness, wear resistance, chemical resistance, and high strength to weight ratio. But machining of advanced ceramic like Al2O3-ceramics is very difficult by any well known and common machining processes. Normally, cleavages and triangular fractures generate when machining of these materials is done by traditional machining methods. It is essential to develop an efficient and accurate machining method for processing advanced ceramic materials. For effective machining of Al2O3-ceramics, a traveling wire electrochemical spark machining (TW-ECSM) setup has been developed. The developed TW-ECSM setup has been utilized to machine Al2O3 ceramic materials and subsequently test results are utilized to analyze the machining performance characteristic. Different SEM photographs show the actual condition of the micro machined surfaces. The practical research analysis and test results on the machining of Al2O3 ceramics by developed TWECSM setup will provide a new guideline to the researchers and manufacturing engineers.


2007 ◽  
Vol 81A (4) ◽  
pp. 982-986 ◽  
Author(s):  
Horst Fischer ◽  
Maria Luk ◽  
Bernward Oedekoven ◽  
Rainer Telle ◽  
Khosrow Mottaghy

2012 ◽  
Vol 488-489 ◽  
pp. 340-344
Author(s):  
Qing Hui Wang ◽  
Zhang Yong Wu ◽  
Zhen Hua Duan ◽  
Cheng Zhuo Wen ◽  
Xi Wu

In order to solve the severe wear problem of the core in water hydraulic high-speed on/off valve, according to the requirements of high-speed on/off valve components in water hydraulic transmission and from the practical standpoint, the core manufactured with ceramic materials could bring its advantages of high strength, big hardness, good wearability, non-affection with corrosion into play.By the wear-resisting experiment the wear case of Si3N4 ceramic core has been studied with weight-loss method by electronic analysis balanc.The results show that the core manufactured with Si3N4 has high abrasion resistance and low wear rate, and the structure design of water hydraulic high-speed on/off valve with ceramic core is reasonable and the performance is good.


2015 ◽  
Vol 51 (3) ◽  
pp. 202-205 ◽  
Author(s):  
I. G. Atabaev ◽  
Sh. A. Faiziev ◽  
M. Paizullakhanov ◽  
Zh. Z. Shermatov ◽  
O. Razhamatov

2018 ◽  
Vol 118 ◽  
pp. 111-118
Author(s):  
О. V. Savvova ◽  
O. I. Fesenko ◽  
V. D. Timofeеv ◽  
Ya. V. Poviderna

Based on the analysis of existing mullite-cordierite sitalls, the need to create high-strength materials of this type for individual and local protection against high-speed loads has been determined. They should be characterized by lower cost, due to low-temperature short-term heat treatment using domestic raw materials. An important aspect of ensuring the effective protective effect of an armor-element, in addition to its armor resistance and survivability, is the ability to withstand the effects of open flame and combustible mixtures, which is determined by the thermal properties of the sitalls. The aim of this work is to study the thermal properties, namely thermal expansion coefficient and fire resistance, high strength mullite-cordierite glass-ceramics that they are developed by us earlier. The temperature coefficient of linear expansion was determined using a quartz vertical dilatometer QVD-5A (ASTM C 372-94 (2007)), fire resistance according to GOST 33000—2014. According to X-ray diffraction and differential thermal analyzes, the experimental samples were divided into two groups according to the formation mechanism of structure and phase composition of glass materials during heat treatment. For each of the materials groups, the influence of the chemical and phase compositions on the thermal coefficient of linear expansion of the original mullite-cordierite glass materials and glass-ceramic materials (sitalls) thermally treated using two-stage heat treatment was determined. The study of the fire resistance of the developed glass-ceramic materials made it possible to establish that they withstand the thermal load in a certain mode for 360 minutes. It has been established that providing high thermal- and fire resistance (RE 360 (h)) is a determining factor in the production of hardened glass crystalline materials that are able to resist to thermal destroying at sharp temperature change.


2020 ◽  
Vol 3 (4) ◽  
pp. 31-38
Author(s):  
V. Men'shikova ◽  
L. Demina

research by some scientists shows that the most expensive element in the manufacture of construction ceramics are clay materials, in particular kaolins. They allow getting products with high strength, but at the same time increase significantly the mass refractoriness. In this connection, a significant amount of melt is added or the firing temperature is increased. Of course, this leads to an increase in the cost of products. In Russia, the reserves of these raw materials are insufficient and it is advisable to look for new non-traditional types of raw materials. There is a need to adjust the component composition of ceramic masses and use non-plastic raw materials. An example is natural wollastonites or their analogues in the form of diopside, which are a little-used type of mineral raw material. In the Siberian region, there are several deposits of non-plastic varieties of raw materials for the production of fired construction products. The most famous are the deposits of the Slyudyansky and Sayan districts. The authors present the results of analysis of diopside rocks, where the chemical, mineral compositions and behavior of samples under heating are studied. The absence of alkali and alkaline earth metal oxides in diopsides was determined. The content of iron oxide in the amount of 0.1% indicates the purity of the raw material. More than half of the composition is occupied by silica, which is 53% and 58% in the rocks of the Burutuysky and Sayan deposits, respectively. The basis of the mineral composition of the samples is diopside, with the presence of quartz, calcite, mica and magnesium carbonate. This range of minerals is traditional in many charges of ceramic materials. Therefore, the possibility of using diopside rocks in the production of building ceramic materials is quite high.


Sign in / Sign up

Export Citation Format

Share Document