The Properties of Water Hydraulic High-Speed On/Off Valve Ceramic-Based

2012 ◽  
Vol 488-489 ◽  
pp. 340-344
Author(s):  
Qing Hui Wang ◽  
Zhang Yong Wu ◽  
Zhen Hua Duan ◽  
Cheng Zhuo Wen ◽  
Xi Wu

In order to solve the severe wear problem of the core in water hydraulic high-speed on/off valve, according to the requirements of high-speed on/off valve components in water hydraulic transmission and from the practical standpoint, the core manufactured with ceramic materials could bring its advantages of high strength, big hardness, good wearability, non-affection with corrosion into play.By the wear-resisting experiment the wear case of Si3N4 ceramic core has been studied with weight-loss method by electronic analysis balanc.The results show that the core manufactured with Si3N4 has high abrasion resistance and low wear rate, and the structure design of water hydraulic high-speed on/off valve with ceramic core is reasonable and the performance is good.

2021 ◽  
Vol 1035 ◽  
pp. 297-304
Author(s):  
Jian Sheng Yao ◽  
Long Pei Dong ◽  
Li Li Wang ◽  
Shu Yang ◽  
Wei Yang ◽  
...  

The interfacial reaction between alloys and ceramic materials is an important factor to influence the quality and service performance of the turbine blade. In this paper, three typical height sections of 120mm, 160mm and 210mm were selected, and the interface reactions between DD6 single crystal superalloy and silica based ceramic cores were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS). The results showed that the infiltration degree of the melt alloy increases with the increase of reaction time. The thickness of the reaction layer could be over 0.3mm when the reaction time increased up to 70min. The main reasons of forming the infiltration layer were the infiltration of the Al element and the interfacial reaction between the Al element and the ceramic core. There formed an aluminum deficient layer on the metal surface because of the interface reaction between the alloy and the ceramic core. The dense layer formed by interfacial reaction on the surface of the core will cause some difficulties for core leaching. Keywords: DD6 single crystal superalloy; Silica based ceramic core; Interface reaction


1980 ◽  
Vol 8 (1) ◽  
pp. 10-12
Author(s):  
F. C. Brenner

Abstract Tread wear rates during first wear measured by groove depth and weight changes do not always agree. Sometimes, the groove depth method shows a high rate and the weight loss method a low rate. Reported here are experiments designed to determine if grooves show depth changes without wear. Four tires were measured before mounting on a wheel, after mounting and inflation, and after inflation and storage. The mounted and inflated tires showed shallower shoulder grooves and deeper center grooves than the unmounted tires. In a second experiment, tires were measured immediately after a tread wear test and then stored mounted for two weeks before remeasuring. Each groove became deeper, and there was no change in the crown radius of any tire.


1994 ◽  
Vol 43 (489) ◽  
pp. 599-605 ◽  
Author(s):  
Akira YAMAKAWA ◽  
Takehisa YAMAMOTO ◽  
Tomoyuki AWAZU ◽  
Kenji MATSUNUMA ◽  
Takao NISHIOKA

Alloy Digest ◽  
1965 ◽  
Vol 14 (2) ◽  

Abstract Cyclops BHT is a low-alloy martensitic high-speed steel of the molybdenum type recommended for high strength, high load structural components designed for elevated temperature service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-173. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1974 ◽  
Vol 23 (11) ◽  

Abstract VASCO M-50 is a hardenable (martensitic), low-alloy high-speed steel developed primarily for high-strength, high-load components (such as bearings and gears) designed for elevated-temperature service. It may be used at temperatures up to 600 F; this is in contrast to AISI 52100 steel which may be used up to only 350 F. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: TS-278. Producer or source: Teledyne Vasco.


1989 ◽  
Author(s):  
I. A. Aksay ◽  
G. C. Stangle ◽  
D. M. Dabbs ◽  
M. Sarikaya

2020 ◽  
Vol 15 ◽  
Author(s):  
Fei Sun ◽  
Guohe Li ◽  
Qi Zhang ◽  
Meng Liu

: Cr12MoV hardened steel is widely used in the manufacturing of stamping die because of its high strength, high hardness, and good wear resistance. As a kind of mainstream cutting technology, high-speed machining has been applied in the machining of Cr12MoV hardened steel. Based on the review of a large number of literature, the development of high-speed machining of Cr12MoV hardened steel was summarized, including the research status of the saw-tooth chip, cutting force, cutting temperature, tool wear, machined surface quality, and parameters optimization. The problems that exist in the current research were discussed and the directions of future research were pointed out. It can promote the development of high-speed machining of Cr12MoV hardened steel.


Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


2012 ◽  
Vol 9 (4) ◽  
pp. 1746-1752 ◽  
Author(s):  
J. Wilson Sahayaraj ◽  
A. John Amalraj ◽  
Susai Rajendran ◽  
N. Vijaya

The inhibition efficiency (IE) of sodium molybdate (SM) in controlling corrosion of carbon steel in an aqueous solution containing 120 ppm of Cl-, in the absence and presence of Zn2+has been evaluated by weight-loss method. A synergistic effect exists between SM and Zn2+when the concentration of Zn2+is 25 ppm and above. Inhibition efficiencies obtained are greater than 85%. Antagonistic effect exists between SM and Zn2+when the concentration of Zn2+is 10 ppm and below. The SM-Zn2+system shows excellent IE up to third day. Above third day IE decreases. Acceleration of corrosion takes place. Excellent IE is shown at pH 5,7 and 12. At pH 9, IE decreases since Zn2+is precipitated as Zn(OH)2in the bulk of the solution. Polarization study reveals that SM-Zn2+system functions as a mixed inhibitor. FTIR spectra reveal that the protective film consists of Fe2+-SM complex and Zn(OH)2.


2021 ◽  
Vol 11 (13) ◽  
pp. 6056
Author(s):  
Egle Rosson ◽  
Acacio Rincón Rincón Romero ◽  
Denis Badocco ◽  
Federico Zorzi ◽  
Paolo Sgarbossa ◽  
...  

Spent fluorescent lamps (SFL) are classified as hazardous materials in the European Waste Catalogue, which includes residues from various hi-tech devices. The most common end-of-life treatment of SFL consists in the recovery of rare earth elements from the phosphor powders, with associated problems in the management of the glass residues, which are usually landfilled. This study involves the manufacturing of porous ceramics from both the coarse glass-rich fraction and the phosphor-enriched fraction of spent fluorescent lamps. These porous materials, realizing the immobilization of Rare Earth Elements (REEs) within a glass matrix, are suggested for application in buildings as thermal and acoustic insulators. The proposed process is characterized by: (i) alkaline activation (2.5 M or 1 M NaOH aqueous solution); (ii) pre-curing at 75 °C; (iii) the addition of a surfactant (Triton X-100) for foaming at high-speed stirring; (iv) curing at 45 °C; (v) viscous flow sintering at 700 °C. All the final porous ceramics present a limited metal leaching and, in particular, the coarse glass fraction activated with 2.5 M NaOH solution leads to materials comparable to commercial glass foams in terms of mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document