The National Shipbuilding Research Program, 1992 Ship Production Symposium Proceedings, Paper No. 5B-1: NIDDESC - Enabling Product Data Exchange for Marine Industry

1992 ◽  
Author(s):  
James Murphy
1994 ◽  
Vol 10 (01) ◽  
pp. 24-30
Author(s):  
James Murphy

The use of computer-aided design (CAD) technology in the U.S. Navy and marine industry has evolved from a drafting-based design tool to a three-dimensional (3D) product-oriented information base, used for design, production and service life support. One of the most significant enhancements to current CAD technology has been the incorporation or integration of non-graphic attribute information with traditional graphics data. This expanded information base or product model has enabled the marine industry to expand CAD use to include such activities as engineering analysis, production control, and logistics support. While significant savings can be achieved through the exchange of digital product model data between different agents, current graphics-based CAD data exchange standards do not support this expanded information content. The Navy/Industry Digital Data Exchange Standards Committee (NIDDESC) was formed as a cooperative effort of the Naval Sea Systems Command (NAVSEA) and the National Shipbuilding Research Program to develop an industry consensus on product data and to ensure these industry requirements are incorporated into national and international data exchange standards. The NIDDESC effort has resulted in the development of a suite of product model specifications or application protocols (APs) defining marine industry product model data. These APs have been submitted for inclusion into the next generation of data exchange standards.


1990 ◽  
Vol 6 (02) ◽  
pp. 125-137
Author(s):  
John Kloetzli ◽  
Dan Billingsley

The application of computer-aided design (CAD) and manufacturing (CAM) techniques in the marine industry has increased significantly in recent years. With more individual designers and shipyards using CAD within their organizations, the pressure to transfer CAD data between organizations has also increased. The Navy/Industry Digital Data Exchange Standards Committee (NIDDESC) provides a mechanism for public and private organizations to cooperate in the development of digital data transfer techniques. Organizationally, NIDDESC is a cost-sharing venture between private firms and government organizations. This effort arose from the Naval Sea Systems Command (NAVSEA) in cooperation with the National Shipbuilding Research Program. The members include leading professionals in the marine industry from several major design firms, private shipyards, naval shipyards, and government laboratories. All members are directly involved in CAD/CAM in their organizations and together represent a broad spectrum of experience and perspectives. NIDDESC has many subcommittees devoted to specific areas of digital data transfer. The basic objective is to develop an industry-wide consensus on product data models for ship structure and distribution systems. Efforts include contributions to the Initial Graphics Exchange Standard, the Product Data Exchange Standard, preparation of a Recommended Practices Manual and the analysis of ship production data flows. NIDDESC has made contributions to the development of CALS standards, including MIL-STD-1840, DOD-IGES, SGML, and MIL-D-28000.


2017 ◽  
Vol 5 (1) ◽  
pp. 54-67 ◽  
Author(s):  
Alain Pfouga ◽  
Josip Stjepandić

Abstract With their practical introduction by the 1970s, virtual product data have emerged to a primary technical source of intelligence in manufacturing. Modern organization have since then deployed and continuously improved strategies, methods and tools to feed the individual needs of their business domains, multidisciplinary teams, and supply chain, mastering the growing complexity of virtual product development. As far as product data are concerned, data exchange, 3D visualization, and communication are crucial processes for reusing manufacturing intelligence across lifecycle stages. Research and industry have developed several CAD interoperability, and visualization formats to uphold these product development strategies. Most of them, however, have not yet provided sufficient integration capabilities required for current digital transformation needs, mainly due to their lack of versatility in the multi-domains of the product lifecycle and primary focus on individual product descriptions. This paper analyses the methods and tools used in virtual product development to leverage 3D CAD data in the entire life cycle based on industrial standards. It presents a set of versatile concepts for mastering exchange, aware and unaware visualization and collaboration from single technical packages fit purposely for various domains and disciplines. It introduces a 3D master document utilizing PDF techniques, which fulfills requirements for electronic discovery and enables multi-domain collaboration and long-term data retention for the digital enterprise. Highlights With their practical introduction by the 1970s, virtual product data have emerged to a primary technical source of intelligence in manufacturing. Modern organization have since then deployed and continuously improved strategies, methods and tools to feed the individual needs of their business domains, multidisciplinary teams, and supply chain, mastering the growing complexity of virtual product development. As far as product data are concerned, data exchange, 3D visualization, and communication are crucial processes for reusing manufacturing intelligence across lifecycle stages. Research and industry have developed several CAD interoperability, and visualization formats to uphold these product development strategies. Most of them, however, have not yet provided sufficient integration capabilities required for current digital transformation needs, mainly due to their lack of versatility in the multi-domains of the product lifecycle and primary focus on individual product descriptions. This paper analyses the methods and tools used in virtual product development to leverage 3D CAD data in the entire life cycle. It presents a set of versatile concepts for mastering exchange, aware and unaware visualization and collaboration from single technical packages fit purposely for various domains and disciplines. It introduces a 3D master document utilizing PDF techniques, which fulfills requirements for electronic discovery and enables multi-domain collaboration and long-term data retention for the digital enterprise. 3D interoperability makes an important contribution to engineering collaboration. Several formats made to that end successively deal with challenges of their time. Some of these such as STEP are highly verbose formats, which gradually encapsulate all information necessary to define a product, its manufacture, and lifecycle support. Others are focusing best on lightweight visualization use cases and endure better with increasing size and complexity of data. Traditional formats like STEP and JT, though, are not capable of supporting the publishing activity in even broader fashion. New tendencies therefore are aiming at strengthening these individual formats through combination with complementary standards or by using document-based approaches. Unlike STEP or JT, 3D PDF can serve multiple purposes and leverages 3D data downstream throughout the product lifecycle to create, distribute and manage ubiquitous, highly consumable, role-specific rich renditions. Based on its container structure, 3D PDF is a fundamentally different approach from traditional experience established in product development – it is an exceptionally proficient contextual aggregation of multi-domain and multi-disciplinary product data. The manufacturing community should embrace it as an addition and great improvement to current engineering collaboration standards. All engineering components required for its descriptions are meanwhile published international standards. The productive use of 3D PDF for sure requires a change in the current mode of operation, be it simply because the traditional CAD model promptly demands new technical descriptions. More perspectives, which have not been primary focus of this approach need to be addressed in order to implement the 3D digital master concept of this paper in the industry. For the complete process to work properly, the actual workflows of today's business organizations must succeed a readiness check involving enhanced technical documentation capabilities of the authoring (CAx) applications based on 3D, PLM, and manufacturing workflows as well as new ways for engineering data communication with supply chain partners in the digital enterprise.


2006 ◽  
Vol 532-533 ◽  
pp. 1100-1103
Author(s):  
Zhou Yang Li ◽  
Xi Tian Tian ◽  
Guo Ding Chen

To solve the problems of product data exchange and sharing between CAD, CAPP, CAM and CNC systems, a CAD/CAPP/CAM/CNC integrated system model is established according to STEP-NC standards. STEP-NC files are used to represent product data in form of neutral file, by which data exchange and sharing can be realized in the integrated system. Furthermore, the key integration technologies including integrated system data modeling, feature conversion are discussed in this paper.


2005 ◽  
Vol 21 (02) ◽  
pp. 73-80
Author(s):  
Gregory F. Morea

The design and construction of any marine vessel designed on a computer-assisted design (CAD) system, from a nuclear aircraft carrier to the smallest work boat, requires the interaction of many electronic databases, all of which must be continually updated for the work to proceed. The exchange of this information, especially geometry, in digital format is accomplished using many different tools and techniques. Much has been presented to the marine community about the tools used, such as the Initial Graphics Exchange Specification (IGES) and the Standard for the Exchange of Product Model Data (STEP), and how these tools might be used for exchanges in the future, but little has been presented on how production data exchanges actually occur. At Electric Boat, current submarine programs cannot wait for future data transfer solutions. Design and construction data must be exchanged among various activities, internal and external, with such volume as to make manual reentry of data an unrealistic solution. Because of the complexities associated with the electronic exchange of these data, the General Dynamics (GD) Marine organization of Electric Boat has a dedicated group that both performs production data exchanges and researches and implements new methods of electronic transfer. This paper discusses the rationale for and the formation of the data exchange group at Electric Boat, along with its place within GD Marine. It then presents an overview of the tools used by the group and how production transfers occur, both routine and unique. Notable transfers provide examples of how the group works to solve transfer problems. Importantly, this paper shows how many of the exchange standards developed for the marine industry actually work in production. Special emphasis will be placed on the exchange of solid models in a day-to-day environment. The paper concludes with a look at the future of production data exchanges for Electric Boat and the larger marine industry.


Sign in / Sign up

Export Citation Format

Share Document