Atomistic Calculation of Elastic Moduli in Strained Silicon

2007 ◽  
Author(s):  
Richard Zhu ◽  
Ernian Pan ◽  
Peter W. Chung ◽  
Xinli Cai ◽  
Kim M. Liew ◽  
...  
2006 ◽  
Vol 21 (7) ◽  
pp. 906-911 ◽  
Author(s):  
R Zhu ◽  
E Pan ◽  
P W Chung ◽  
X Cai ◽  
K M Liew ◽  
...  

2002 ◽  
Vol 715 ◽  
Author(s):  
Zhi-Feng Huang ◽  
Rashmi C. Desai

AbstractThe morphological and compositional instabilities in the heteroepitaxial strained alloy films have attracted intense interest from both experimentalists and theorists. To understand the mechanisms and properties for the generation of instabilities, we have developed a nonequilibrium, continuum model for the dislocation-free and coherent film systems. The early evolution processes of surface pro.les for both growing and postdeposition (non-growing) thin alloy films are studied through a linear stability analysis. We consider the coupling between top surface of the film and the underlying bulk, as well as the combination and interplay of different elastic effects. These e.ects are caused by filmsubstrate lattice misfit, composition dependence of film lattice constant (compositional stress), and composition dependence of both Young's and shear elastic moduli. The interplay of these factors as well as the growth temperature and deposition rate leads to rich and complicated stability results. For both the growing.lm and non-growing alloy free surface, we determine the stability conditions and diagrams for the system. These show the joint stability or instability for film morphology and compositional pro.les, as well as the asymmetry between tensile and compressive layers. The kinetic critical thickness for the onset of instability during.lm growth is also calculated, and its scaling behavior with respect to misfit strain and deposition rate determined. Our results have implications for real alloy growth systems such as SiGe and InGaAs, which agree with qualitative trends seen in recent experimental observations.


2003 ◽  
Vol 765 ◽  
Author(s):  
Minjoo L. Lee ◽  
Eugene A. Fitzgerald

AbstractThe use of alternative channel materials such as germanium [1,2] and strained silicon (ε-Si) [3-5] is increasingly being considered as a method for improving the performance of MOSFETs. While ε-Si grown on relaxed Si1-x Gex is drawing closer to widespread commercialization, it is currently believed that almost all of the performance benefit in CMOS implementations will derive from the enhanced mobility of the n -MOSFET [5]. In this paper, we demonstrate that ε-Si p -MOSFETs can be engineered to exhibit mobility enhancements that increase or remain constant as a function of inversion density. We have also designed and fabricated ε-Si / ε-Ge dual-channel p -MOSFETs exhibiting mobility enhancements of 10 times. These p -MOSFETs can be integrated on the same wafers as ε-Si n -MOSFETs, making symmetric-mobility CMOS possible.


1983 ◽  
Vol 11 (1) ◽  
pp. 3-19
Author(s):  
T. Akasaka ◽  
S. Yamazaki ◽  
K. Asano

Abstract The buckled wave length and the critical in-plane bending moment of laminated long composite strips of cord-reinforced rubber sheets on an elastic foundation is analyzed by Galerkin's method, with consideration of interlaminar shear deformation. An approximate formula for the wave length is given in terms of cord angle, elastic moduli of the constituent rubber and steel cord, and several structural dimensions. The calculated wave length for a 165SR13 automobile tire with steel breakers (belts) was very close to experimental results. An additional study was then conducted on the post-buckling behavior of a laminated biased composite beam on an elastic foundation. This beam is subjected to axial compression. The calculated relationship between the buckled wave rise and the compressive membrane force also agreed well with experimental results.


2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


1964 ◽  
Vol 35 (7) ◽  
pp. 2161-2165 ◽  
Author(s):  
H. J. McSkimin ◽  
P. Andreatch

Sign in / Sign up

Export Citation Format

Share Document