Improved High Frequency Discrimination: A New Approach to Correct for Regional Source Scaling Variations (POSTPRINT) Annual Report 2

2012 ◽  
Author(s):  
Kevin M. Mayeda ◽  
William R. Walter ◽  
Rengin M. Gok ◽  
Luca Malagnini
2017 ◽  
Vol 2017 (45) ◽  
pp. 83-89
Author(s):  
A.A. Marusenkov ◽  

Using dedicated high-frequency measuring system the distribution of the Barkhausen jumps intensity along a reversal magnetization cycle was investigated for low noise fluxgate sensors of various core shapes. It is shown that Barkhausen (reversal magnetization) noise intensity is strongly inhomogeneous during an excitation cycle. In the traditional second harmonic fluxgate magnetometers the signals are extracted in the frequency domain, as a result, some average value of reversal magnetization noises is contributed to the output signals. In order to fit better the noise shape and minimize its transfer to the magnetometer output the new approach for demodulating signals of these sensors is proposed. The new demodulating method is based on information extraction in the time domain taking into account the statistical properties of cyclic reversal magnetization noises. This approach yields considerable reduction of the fluxgate magnetometer noise in comparison with demodulation of the signal filtered at the second harmonic of the excitation frequency.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Mai M. El Ghazaly ◽  
Mona I. Mourad ◽  
Nesrine H. Hamouda ◽  
Mohamed A. Talaat

Abstract Background Speech perception in cochlear implants (CI) is affected by frequency resolution, exposure time, and working memory. Frequency discrimination is especially difficult in CI. Working memory is important for speech and language development and is expected to contribute to the vast variability in CI speech reception and expression outcome. The aim of this study is to evaluate CI patients’ consonants discrimination that varies in voicing, manner, and place of articulation imparting differences in pitch, time, and intensity, and also to evaluate working memory status and its possible effect on consonant discrimination. Results Fifty-five CI patients were included in this study. Their aided thresholds were less than 40 dBHL. Consonant speech discrimination was assessed using Arabic consonant discrimination words. Working memory was assessed using Test of Memory and Learning-2 (TOMAL-2). Subjects were divided according to the onset of hearing loss into prelingual children and postlingual adults and teenagers. Consonant classes studied were fricatives, stops, nasals, and laterals. Performance on the high frequency CVC words was 64.23% ± 17.41 for prelinguals and 61.70% ± 14.47 for postlinguals. These scores were significantly lower than scores on phonetically balanced word list (PBWL) of 79.94% ± 12.69 for prelinguals and 80.80% ± 11.36 for postlinguals. The lowest scores were for the fricatives. Working memory scores were strongly and positively correlated with speech discrimination scores. Conclusions Consonant discrimination using high frequency weighted words can provide a realistic tool for assessment of CI speech perception. Working memory skills showed a strong positive relationship with speech discrimination abilities in CI.


1986 ◽  
Vol 40 (5) ◽  
pp. 683-687 ◽  
Author(s):  
Frank V. Bright ◽  
Daniel A. Wilson ◽  
Gary M. Hieftje

An inexpensive ultra-high-frequency (UHF) television tuner and an argon-ion laser are employed for the determination of excited-state lifetimes of a series of common fluorophores. Fluorescence lifetimes are determined in the frequency domain; the results are in good agreement with previously reported values and demonstrate the utility of the new approach for subnanosecond measurements. Binary mixtures of rhodamine 6G and rose bengal can also be resolved with the use of this novel instrument design.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE377-VE384 ◽  
Author(s):  
Kenneth P. Bube ◽  
John K. Washbourne

Many seismic imaging techniques require computing traveltimes and travel paths. Methods to compute raypaths are usually based on high-frequency approximations. In situations such as head waves, these raypaths minimize traveltime but are not paths along which most of the energy travels. We have developed a new approach to computing raypaths, using a modification of ray bending that we call wave tracing; it computes raypaths and traveltimes that are more consistent with the paths and times for the band-limited signals in real data than the paths and times obtained using high-frequency approximations. Wave tracing shortens the raypath while keeping the raypath within the Fresnel zone for a characteristic frequency of the signal.


Sign in / Sign up

Export Citation Format

Share Document