Reformulation of Bohmian mechanics

2021 ◽  
Author(s):  
◽  
Moise Borilla Licea

Bohmian mechanics as formulated originally in 1952, has been useful in the implementation of numerical methods applied to quantum mechanics. The scientific community though has had ever since a critical thought about it. Therefore, there are still points to be clarified and rectified. The two main problems are basically: Bohmian mechanics gives a privilege role to the position representation. Secondly, the current interpretation of Bohmian trajectories has been recently proven wrong. In this context, in Chapter 2, new complex Bohmian quantities are defined; so that they allow the capacity to formulate Bohmian mechanics in any arbitrary continuous representation, for instance, the momentum representation. This Chapter is fully based on two articles, regarding the proposed complex Bohmian formulation and its extension into momentum space. Chapter 3 deals with a redefinition and reinterpretation of the Bohmian trajectories from the handling of the continuity equation, this is done without any need of additional postulates or interpretations. Also, it is proved that Bohmian mechanics is actually more than a projective aspect of the Wigner function. As a third point, Chapter 4 presents a sytematic treatment of the hydrodynamic scheme of Bohmian mechanics. Then, a brief summary of the transport equations in Bohmian mechanics is done. Next, a unified hydrodynamic treatment is found for the Bohmian mechanics. This treatment is useful to sketch, a Bohmian treatment to efficiently find the steady value of the transmission integral. In Chapter 5 conclusions of this thesis are drawn.

2019 ◽  
Vol 34 (33) ◽  
pp. 1950267
Author(s):  
Won Sang Chung

In this paper, we present a new D-dimensional generalized uncertainty principle (GUP) algebra with commuting coordinates which recovers [Formula: see text] in one dimension. We find two representations for this GUP: momentum representation and position representation. We discuss the GUP-corrected three-dimensional quantum mechanics in position representation for a small [Formula: see text]. Finally, we discuss the momentum wave function and GUP-corrected Fermi metal theory.


Proceedings ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 25
Author(s):  
Nicholas Carrara

Entropic Dynamics is a framework for deriving the laws of physics from entropic inference. In an (ED) of particles, the central assumption is that particles have definite yet unknown positions. By appealing to certain symmetries, one can derive a quantum mechanics of scalar particles and particles with spin, in which the trajectories of the particles are given by a stochastic equation. This is much like Nelson’s stochastic mechanics which also assumes a fluctuating particle as the basis of the microstates. The uniqueness of ED as an entropic inference of particles allows one to continuously transition between fluctuating particles and the smooth trajectories assumed in Bohmian mechanics. In this work we explore the consequences of the ED framework by studying the trajectories of particles in the continuum between stochastic and Bohmian limits in the context of a few physical examples, which include the double slit and Stern-Gerlach experiments.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 567 ◽  
Author(s):  
Mojtaba Ghadimi ◽  
Michael Hall ◽  
Howard Wiseman

“Locality” is a fraught word, even within the restricted context of Bell’s theorem. As one of us has argued elsewhere, that is partly because Bell himself used the word with different meanings at different stages in his career. The original, weaker, meaning for locality was in his 1964 theorem: that the choice of setting by one party could never affect the outcome of a measurement performed by a distant second party. The epitome of a quantum theory violating this weak notion of locality (and hence exhibiting a strong form of nonlocality) is Bohmian mechanics. Recently, a new approach to quantum mechanics, inspired by Bohmian mechanics, has been proposed: Many Interacting Worlds. While it is conceptually clear how the interaction between worlds can enable this strong nonlocality, technical problems in the theory have thus far prevented a proof by simulation. Here we report significant progress in tackling one of the most basic difficulties that needs to be overcome: correctly modelling wavefunctions with nodes.


2020 ◽  
Vol 2 (4) ◽  
pp. 600-616
Author(s):  
Andrea Oldofredi

It is generally accepted that quantum mechanics entails a revision of the classical propositional calculus as a consequence of its physical content. However, the universal claim according to which a new quantum logic is indispensable in order to model the propositions of every quantum theory is challenged. In the present essay, we critically discuss this claim by showing that classical logic can be rehabilitated in a quantum context by taking into account Bohmian mechanics. It will be argued, indeed, that such a theoretical framework provides the necessary conceptual tools to reintroduce a classical logic of experimental propositions by virtue of its clear metaphysical picture and its theory of measurement. More precisely, it will be shown that the rehabilitation of a classical propositional calculus is a consequence of the primitive ontology of the theory, a fact that is not yet sufficiently recognized in the literature concerning Bohmian mechanics. This work aims to fill this gap.


2001 ◽  
Vol 16 (31) ◽  
pp. 2047-2057 ◽  
Author(s):  
B. BAGCHI ◽  
C. QUESNE ◽  
M. ZNOJIL

The continuity, equation relating the change in time of the position probability density to the gradient of the probability current density is generalized to PT-symmetric quantum mechanics. The normalization condition of eigenfunctions is modified in accordance with this new conservation law and illustrated with some detailed examples.


2020 ◽  
Vol 9 (10) ◽  
pp. e5019108409
Author(s):  
José Simão Antunes do Carmo

Currently, there is a progressive divestment of some institutions with strong traditions and skills in physical modelling and their consequent impoverishment, to the detriment of numerical modelling. For many reasons, the economic imperatives and the exponential growth of computational means and numerical methods should certainly not be excluded. In this work, the author aimed to highlight the new requirements of the recent sophisticated developments in physical modelling, precisely due to the new needs imposed on them by mathematical and numerical modelling and the growing risks in civil construction works. In this context, reflections are reported, justified by scientific and real-world examples, on the need for maintenance and reinforcement of investments in physical modelling, both to support the scientific community and to design buildings of significant economic, social and environmental impact.


2018 ◽  
Author(s):  
Alexandre GEORGES

Are General Relativity and Quantum Mechanics incompatible? Each in their world, that of the infinitely large and that of the infinitely small, they did not seem to interfere as long as they avoided each other. However, it is their fundamental oppositions that prevent the scientific community from achieving a unification of physics. The proposal of this paper is to provide a mathematical proof of incompatibility, beyond the fact that they have fundamentally different principles, between the foundations of General Relativity and Quantum Mechanics, namely the deformation of the space-time geometry and the Uncertainty Principle. It will thus be possible to provide an absolute limitation in establishing a unifying theory of physics, if any. Moreover, while respecting the conditions fixed by the Uncertainty Principle, it will be tempted to determine with accuracy and simultaneity, the position and the speed of a non-relativistic particle, by application of relativistic principles and bypassing the problems raised by such an operation. The Uncertainty Principle as stated by Werner Heisenberg will be then, in the light of observations made on the measurement of the time dilatation and in accordance with its own terms, refuted by the present. - Physics Essays, Volume 31, Issue 3 (September 2018), Article 12 - https://physicsessays.org/browse-journal-2/product/1667-12-alexandre-georges-incompatibility-between-einstein-s-general-relativity-and-heisenberg-s-uncertainty-principle.html


Sign in / Sign up

Export Citation Format

Share Document