scholarly journals The effect of urea on the curing of urea formaldehyde resins

Author(s):  
С.Н. Вьюнков

Отверждение карбамидоформальдегидных смол с различным мольным соотношением в системе карбамид : формальдегид протекает по разным механизмам. Так, при мольном соотношении карбамид : формальдегид 1 : 2 процесс отверждения направлен в сторону образования межмолекулярных связей – метиленовых и метиленэфирных, о чем свидетельствует снижение содержания гидроскиметильных групп. Введение в смолу карбамида до мольного соотношения карбамид : формальдегид 1 : 1,65 приводит к деструкции метиленэфирных связей под действием амидных групп карбамида, формированию на их месте метиленовых мостиков, образованию мономерных продуктов, которые включают в себя карбамид и его гидроксиметильные производные. Curing of urea-formaldehyde resins with different molar ratio in the system urea : formaldehyde flows through different mechanisms. Thus, at a molar ratio of urea : formaldehyde 1 : 2, the curing process is directed towards the formation of intermolecular bonds – methylene and methylene-ether, as evidenced by a decrease in the content of hydroksimethyl groups. The introduction of urea into the resin to the molar ratio urea : formaldehyde 1 : 1.65 leads to the destruction of methylene-ether bonds under the action of amide groups of urea, the formation of methylene bridges in their place, the formation of monomer products, which include urea and its hydroskimethyl derivatives.

Author(s):  
С.Н. Вьюнков ◽  
В.В. Васильев

Разработана методика химического анализа компонента карбамидоформальдегидной смолы (КФС), нерастворимого в воде. Синтезировали смолу при мольном соотношении исходных компонентов карбамид : формальдегид = 1 : 2, температуре 90 °С, начальной рН = 7,0…8,0, рН на кислой стадии 4,0…4,3. Для выделения водонерастворимого компонента КФС смешивали с большим количеством воды. Осадок промывали водой и растворяли в растворе йодида калия концентрацией 40%. В полученном растворе проводили окисление гидроксиметильных групп и свободного формальдегида йодом в щелочной среде. Избыток йода оттитровывали раствором тиосульфата натрия. В результате реакции образовывался белый хлопьевидный осадок, который отфильтровывали и подвергали анализу. В образце проводили определение общего содержания формальдегида и карбамида. Для этого анализируемый состав помещали в круглодонную колбу, снабженную прямым холодильником и капельной воронкой. В капельную воронку вливали отмеренное количество 45%-й фосфорной кислоты и по каплям добавляли ее в колбу. Колбу нагревали на металлической плитке, собирали выделяющийся формальдегид и сопутствующую воду в мерную колбу. После окончания процесса проводили определение выделившегося формальдегида. Определение карбамида осуществляли, используя уреазно-гипохлоритный метод, при котором уреаза гидролизует оставшийся карбамид до аммиака и двуокиси углерода. Далее весь образовавшийся аммиак определяли по его цветной реакции с гипохлоритом натрия и пересчитывали на карбамид. Разделив полученные массы карбамида и формальдегида на их молекулярные массы получили мольное соотношение карбамид : формальдегид в нерастворимом осадке, равное 1 : 1,5. Наименьшей молекулой, отвечающей этому условию, является олигомер, в котором четыре молекулы карбамида соединены тремя метиленэфирными связями, т. е. содержат шесть молекул формальдегида. Однако олигомеры с небольшой молекулярной массой хорошо растворимы в воде. К водонерастворимым относятся олигомеры с большой массой, значительно превышающей средний уровень. Расчёты показали, что среднее число звеньев из карбамида и метиленэфирной связи в олигомерах КФС составляет 10, а максимальное может доходить до 122. Исследование процесса отверждения компонента КФС, нерастворимого в воде, методом дифференциального термического анализа показало, что оно так же, как и КФС, проходит в три стадии. Однако температуры эндотермических пиков отличаются. Так, пик второй стадии отверждения КФС отмечен на уровне 241,0 °С, а для олигомера, нерастворимого в воде, он соответствует 244,2 °С. Ещё большие различия в температурах пиков третьей стадии отверждения: для КФС он 274,4 °С, для олигомера, нерастворимого в воде, 288,2 °С. Очевидно, что олигомер, нерастворимый в воде, значительно замедляет процесс отверждения КФС. A method of chemical analysis of a component of urea-formaldehyde resin (UFR) which is insoluble in water has been developed. The resin was synthesized at the molar ratio of the starting components urea : formaldehyde = 1 : 2, temperature 90 °С, initial pH = 7,0...8,0 pH in acidic stage 4,0...4,3. For isolation of the water-insoluble component, UFR was mixed with a large amount of water. The precipitate was washed with water and dissolved in a 40% potassium iodide solution. In the resulting solution, hydroxymethyl groups and free formaldehyde were oxidized with iodine in an alkaline medium. Excess of iodine was titrated with a solution of sodium thiosulfate. As a result of the reaction, a white flake-like precipitate was formed, which was filtered out and analyzed. The total content of formaldehyde and urea was determined in the sample. To do this, the analyzed composition was placed in a round-bottomed flask equipped with a direct condenser and a dropping funnel. A measured amount of 45% phosphoric acid was poured into the dropping funnel and added drop by drop to the flask. The flask was heated on a metal tile, and the released formaldehyde and accompanying water were collected in a measuring flask. After the end of the process, the released formaldehyde was determined. Urea was determined using the urease- hypochlorite method, in which urease hydrolyzes the remaining urea to ammonia and carbon dioxide. Then all the formed ammonia was determined by its color reaction with sodium hypochlorite and converted to urea. Separating the obtained masses of urea and formaldehyde by their molecular masses, we obtained a molar ratio of urea : formaldehyde in an insoluble precipitate equal to 1: 1.5. The smallest molecule that meets this condition is an oligomer in which four carbamide molecules are connected with three methylenester bonds, i.e. they contain six formaldehyde molecules. However, oligomers with a small molecular weight were highly soluble in water. Water-insoluble oligomers are those with a large mass that is significantly higher than the average level. Calculations showed that the average number of urea and methylene-ether links in UFR oligomers was 10, while the maximum number can reach 122. The study of the curing process of the UFR component, insoluble in water, by differential thermal analysis showed that it, like UFR, took place in three stages. However, the temperatures of endothermic peaks differed. Thus, the peak of the second stage of UFR curing was found at the level of 241.0 °C, and for an oligomer that was insoluble in water, it corresponded to 244.2 °C. There were even greater differences in the peak temperatures of the third stage of curing: 274.4 °C for UFR an,288.2 °C for the water-insoluble oligomer. It has been obvious that the water-insoluble oligomer significantly has slowed down the UFR curing process.


Author(s):  
Fahriye Yağmur Bütün Buschalsky ◽  
Carsten Mai

AbstractMedium density fibreboards (MDF) are currently not recycled after service life, but various publications report on recycling by the disintegration of MDF using various techniques and the properties of obtained recovered fibres (RF). In this study, the main aim was to put back RF into the MDF manufacturing process as closed-loop recycling using repeated thermo-hydrolytic disintegration. Compared to previous studies, the focus was on the recycling of MDF with a relatively low F:U molar ratio (1.11). Urea–formaldehyde-bonded MDF with a target density of 700 kg m−3 was subjected to thermo-hydrolytic disintegration in an autoclave using only water at 95 °C for 20–30 min. Afterwards, the properties of RF and virgin fibres (VF), of MDF produced thereof and the composition of the disintegration water (DW) were determined. The nitrogen content (NC) revealed that RF contained about 30% of the initially applied UF. The pH of the DW hardly changed during recycling and it contained considerable amounts of reducing sugars. Using RF did not result in higher formaldehyde emissions than VF. Compared to earlier studies using a higher formaldehyde content (higher F:U ratio), MDF bonded with modern UF resins can be disintegrated under clearly milder disintegration conditions with respect to temperature and time. The properties of recycled MDF were similar to those of reference MDF; up to 100% RF could be used without severely deteriorating the strength and increasing formaldehyde emissions from these panels.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1995 ◽  
Author(s):  
Zhigang Wu ◽  
Bengang Zhang ◽  
Xiaojian Zhou ◽  
Lifen Li ◽  
Liping Yu ◽  
...  

Soybean protein hydrolysate, melamine, urea, and concentrated formaldehyde were used to synthesize an environmentally friendly soybean protein-melamine-urea-formaldehyde (SMUF) co-condensation resin. (NH4)2SO4, (NH4)2HPO4, (NH4)2HPO4 + (NH4)2SO4, (NH4)2HPO4 + (NH4)2S2O8, and (NH4)2HPO4 + (NH4)2SO4 + (NH4)2S2O8 were employed as curing agents for SMUF resin. The curing and thermal behaviors of the SMUF resin were investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The results revealed the following: (1) (NH4)2SO4 alone could not cure the SMUF resin completely; thus, the final shear strength accomplished plywood with the resin was low, and its water resistance was poor, while the adhesive section was loose and porous/brittle after curing. (2) (NH4)2HPO4 could be hydrolyzed to generate H+ and promote SMUF curing, but it could also form polyphosphoric acids, resulting in crosslinking reactions with SMUF in parallel; thereby, the curing properties were improved. (3) When (NH4)2HPO4 + (NH4)2SO4 + (NH4)2S2O8 were engaged collectively as curing agent, the shear strength, water resistance, and heat resistance of SMUF attained were the best possible whereas the curing temperature was decreased and the heat released by curing was elevated substantially, which signifies maximized extent of crosslinking was achieved. Further, the adhesive section exhibited mostly a crosslinking intertexture as demonstrated by means of SEM. Accordingly, this study may serve as a guide for the curing of amino resins, with low-molar ratio of formaldehyde to amine in adhesives, which are applied to plywood production.


2004 ◽  
Vol 77 (1) ◽  
pp. 161-175 ◽  
Author(s):  
Donghang Xie ◽  
Hsien C. Wang

Abstract The curing of brominated poly(isobutylene-co-4-methylstyrene) or BIMS with ZnO/HSt, ZnO/Zn(St)2 or Zn(St)2 was investigated using FTIR spectroscopy. Changes of carbonyl absorption were monitored by FTIR during the course of curing, which revealed a four-step curing process: 1) formation of zinc salts, 2) esterification to generate Zn-containing Lewis-acid catalysts, 3) Friedel-Crafts alkylation, and 4) post cure. It was found that for the ZnO/HSt system, the ZnO concentration had to be high enough to meet the ZnO/Br molar ratio of 0.9 for complete conversion of curing functionalities. HSt was an effective accelerator, which reduces the induction time and increases the curing rate. HSt of 2 to 3 phr was recommended to achieve optimum acceleration results. Over use of HSt would lead to dramatic reduction of crosslinking density, due to the fact that significant amounts of curing functionalities were consumed to form stearate esters instead of crosslinks. The curing with ZnO/Zn(St)2 was similar to the ZnO/HSt system but faster due to the fact that zinc salt was directly added. Zn(St)2 alone was effective to initiate a cure, but the reversion of curing was observed at high concentrations, probably due to the presence of large amount of acids, such as HSt and HBr both of which were generated during curing, and the stearate esters. Addition of ZnO eliminates the reversion through neutralization of the acids.


2005 ◽  
Vol 82 (1) ◽  
pp. 143-149 ◽  
Author(s):  
G. Vázquez ◽  
F. López-Suevos ◽  
J. González-Alvarez ◽  
G. Antorrena

2020 ◽  
Vol 16 (2) ◽  
pp. 212-217
Author(s):  
Dicky Dermawan ◽  
Lucky William Kusnadi ◽  
Jemmy Lesmana

Urea-formaldehyde (UF) resin adhesive for wood-based panel industries are commonly manufactured using conventional alkaline-acid process. This paper reports a process modification of a conventional UF resin preparation by incorporating a strong-acid step, involving simultaneous methylolation and condensation reactions at very low pH at the beginning of the processing step. The experiment showed that this additional step should be carried out at short duration and at high enough temperature in order to avoid gelation or separation problems. In order to control temperature rise caused by the exothermic nature of the reactions, the modified process requires a higher initial formaldehyde-to-urea (F/U) molar ratio compared to the original. For the same reason, the first urea should be fed incrementally to ensure high F/U ratio at any time during the strong acid step. Using regular formalin concentration as raw material at the same F/U molar ratio, the modified resin showed lower free formaldehyde content thus have lower reactivity in comparison to those of the original. However, when the same procedure was applied using higher formaldehyde concentration at higher solid content, the produced resin showed comparable free formaldehyde content and shorter gelation time. Application test for making plywood showed that the modified process gave a very significant improvement in both the internal bonding strength and formaldehyde emission.


Author(s):  
Д.В. Иванов ◽  
С.В. Шевченко ◽  
М.А. Екатеринчева

Исследованы продукты взаимодействия лимонной кислоты, карбамида и аммиака как компоненты карбамидоформальдегидного связующего. Установлено, что полученные соли выступают в качестве отвердителей карбамидоформальдегидной смолы, обладая свойствами прямых и латентных катализаторов отверждения. Из-за низкого значения pH они обеспечивают значительное подкисление связующего сразу после совмещения со смолой, таким образом, действуя как прямые катализаторы отверждения. При этом замещение ионов водорода некоторых карбоксильных групп лимонной кислоты на ион аммония позволяет им обеспечивать снижение значения pH связующего во времени, что является признаком латентных катализаторов. Корреляционной обработкой экспериментальных данных установлено, что величина изменения значения pH связующего во времени на 99 определяется количеством аммиака в рецептуре отвердителя. Наиболее ярко свойства латентного катализатора выражены у отвердителя, синтезированного при мольном соотношении лимонная кислота : карбамид : аммиак - 1 : 1,5 :1,5, получившего рабочее название МО-1,5. В условиях изготовления однослойных древесностружечных плит МО-1,5 способен обеспечивать достаточную глубину отверждения смолы и служить заменой традиционным отвердителям. Он наиболее эффективен во внутреннем слое изготавливаемых плит, о чём свидетельствует повышенная прочность при растяжении перпендикулярно пласти. Плиты, изготовленные с использованием МО-1,5, по сравнению с плитами, изготовленными с использованием традиционного отвердителя - сульфата аммония, обладают на 2040 меньшим содержанием формальдегида. Таким образом, МО-1,5 выступает и как модификатор карбамидоформальдегидной смолы, снижающий токсичность готовых плит. Products of interaction of citric acid, urea and ammonia have been researched as components of urea-formaldehyde glue. Obtained salts have properties of direct and latent catalysts of hardening and can perform as hardeners of urea-formaldehyde resin. Because of low pH value they increase acidity of the glue immediately after combining with resin and act like direct catalysts of hardening. Wherein substitution of hydrogen ions of some carboxyl groups belonging to citric acid on ammonium ions allows to provide a gradual decrease of glue pH value thus they act like latent catalysts. The correlative processing of data has revealed that the change of pH value 99 depends on the amount of ammonia in the hardener formula.The properties of latent catalysts express mostly when hardener is synthesized at molar ratio of citric acid : urea : ammonia - 1 : 1,5 : 1,5, the hardener has been named МО-1,5. During manufacturing of single layer particleboard МО-1,5 is able to provide the necessary depth of resin hardening so it can serve as a substitute to traditional latent catalysts. It is the most effective in the inner layer of manufactured boards, as evidenced by high tensile strength perpendicularly to plane. In comparison with wooden boards manufactured with such traditional hardener as ammonia sulfate wooden boards manufactured with МО-1,5 have 20...40 lower formaldehyde content. Thus МО-1,5 performs also as a modifier of urea-formaldehyde resin providing lower toxicity of wooden board.


Sign in / Sign up

Export Citation Format

Share Document