scholarly journals VARIATION FOR GENETIC RECOMBINATION AMONG TOMATO PLANTS REGENERATED FROM THREE TISSUE CULTURE SYSTEMS

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1164e-1164 ◽  
Author(s):  
Michael E. Compton ◽  
Richard E. Veilleux

Genetic recombination rates of hybrid plants regenerated from three tissue culture. systems were compared by backcrossing regenerated plants with mutant parents and comparing the observed crossover frequencies with those expected based on control plants raised from seed. Increased recombination rates and map distances were observed among plants from micropropagated shoot tips (4.5%-5.9%), cotyledon calli (3.7%-8.5%), and thin cell layers (2.8%-6.5%) between the sunny (sy) and baby leaf syndrome (bls) markers which flank the centromere on chromosome 3. Conversely, a decrease in map distance was observed between bls and the solanifolia (sf) locus which is more distal to the centromere on the same arm of chromosome 3 as bls. Increased map distance among plants regenerated from micropropagated shoot tips, cotyledon calli, and thin cell layers was also observed between white virescence (wv) and anthocyanin reduced (are) loci on chromosome 2.

Genome ◽  
1991 ◽  
Vol 34 (5) ◽  
pp. 810-817 ◽  
Author(s):  
Michael E. Compton ◽  
Richard E. Veilleux

Shoot morphogenesis was compared among two tomato inbred lines, two mutant lines, and their eight reciprocal F1 hybrids in three tissue culture systems. The number of shoots per explant was greatest on tomato pedicel explants, intermediate on cotyledon calli, and poor on micropropagated shoot tips. Genetic recombination rates of F1 hybrid plants regenerated from three tissue culture systems were analyzed by backcrossing the regenerated plants with mutant parents and comparing the observed crossover frequencies with those expected based on control plants raised from seed. Increased recombination rates and map distance were observed among plants from micropropagated shoot tips (18.8%), cotyledon calli (17.3%), and pedicel explants (13.5%) between the markers sunny (sy) and baby leaf syndrome (bls), which flank the centromere on chromosome 3. Conversely, decreased recombination rates and map distance were observed between bls and the locus solanifolia (sf), which is more distal to the centromere on the same arm of chromosome 3 as bls. Increased recombination rates and map distance among plants from micropropagated shoot tips, cotyledon calli, and pedicel explants were also observed between the loci white virescence (wv) and anthocyanin reduced (are) on chromosome 2.Key words: genetic recombination, tomato, Lycopersicon esculentum, pedicel explants, micropropagation, callus culture, plant regeneration.


Genetics ◽  
1987 ◽  
Vol 117 (3) ◽  
pp. 521-531
Author(s):  
Hiroyasu Ebinuma

ABSTRACT The effect of modifiers on recombination frequency between Ze and lem loci on chromosome 3 to elucidate the chromosome specificity of modification and the distribution of modifiers using Bombyx mori lines selected for high (H) and low (L) recombination rates between the pS and Y loci in chromosome 2 was investigated. By crossing to the Z (Ze lem/++) line, the recombination rate between the pS and Y loci in chromosome 2 was decreased from 28.18 to 23.33 in the H line and was increased from 4.92 to 16.05 in the L line. On the other hand, the recombination rate between the Ze and lem loci in chromosome 3 was increased from 16.21 to 20.21 in the Z line by crossing to the H line, but also increased to 19.02 by crossing to the L line. The significant correlation observed between the transformed recombination rates of chromosomes 2 and 3 in the (Z × L) × L backcross indicated that there were common factors modifying recombination frequency in chromosomes 2 and 3 or different factors linked to the same chromosomes. In the family of L × [(Z × L) × L] backcross, the distribution of transformed recombination rates indicated that there were several factors in the remaining chromosomes which were modifying recombination frequency in chromosome 2 but not in chromosome 3. It was also indicated that these factors were linked to different chromosomes than are the factors modifying recombination frequency in chromosome 3. In order to interpret these results, one genetic system model controlling recombination that consists of general and local recombination modifiers was proposed. The evolution of dynamic genetic systems that would effectively reduce recombinational load without reducing the advantage of recombination was discussed.


2022 ◽  
Vol 147 (1) ◽  
pp. 53-61
Author(s):  
Prashant Bhandari ◽  
Reza Shekasteband ◽  
Tong Geon Lee

The first consensus genetic map in fresh-market tomato (Solanum lycopersicum) was constructed, combining genetic recombination data from two biparental F2 segregating populations derived from four different fresh-market tomatoes. Each F2 population was nominated by different academic tomato breeding programs located in major fresh-market tomato-producing areas of the United States, and chromosome-wide variation in recombination rates was observed between tomato populations based on the origin of their breeding programs. A consensus map constructed using 335 common single nucleotide polymorphism (SNP) sites found in both populations spanned 737.3 cM across 12 tomato chromosomes, with chromosome 2 containing more than 40% of the total SNPs and chromosomes 4, 5, 7, and 10 together representing less than 10% of the SNPs. There was a high degree of collinearity between the genetic and physical positions of those 335 SNP markers. The integration of 6553 SNP sites that were detected in either of the two populations with 335 common sites resulted in an extended consensus genetic map. The total length of the extended map was estimated to be 1997.9 cM, which was compatible with a previous estimate for large-fruited fresh-market tomato. A linkage panel for fresh-market tomato was also established using the combined dataset of the consensus map of 335 SNP loci and 73 SNP-genotyped core fresh-market tomatoes. An empirical genetic mapping study of the tomato brachytic trait using the linkage panel demonstrated the value of the consensus map and linkage panel for tomato research. The allelic information in the linkage panel will serve as a basis for SNP marker implementation, such as genotyping platforms and genomic association map, in tomato.


2015 ◽  
Vol 23 (2) ◽  
pp. 127-131 ◽  
Author(s):  
Jaime Teixeira da Silva ◽  
Maria Maddalena Altamura ◽  
Judit Dobránszki

Abstract Thin cell layers (TCLs), which contain a small number of cells or tissues, are explants excised from different organs (stems, leaves, roots, inflorescences, flowers, cotyledons, hypocotyls/epicotyls, and embryos). After almost 45 years of research, this culture system has been used for several monocotyledonous and dicotyledonous plants of commercial importance, and for model plants. The limited amount of cells in a TCL is of paramount importance because marker molecules/genes of differentiation can be easily localized in situ in the target/responsive cells. Thus, the use of TCLs has allowed, and continues to allow, for the expansion of knowledge in plant research in a practical and applied manner into the fields of tissue culture and micropropagation, cell and organ genetics, molecular biology, biochemistry, and development. Starting from a brief historical background, the actual and potential uses of the TCL system are briefly reviewed.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 821-830
Author(s):  
YuanFu Ji ◽  
David M Stelly ◽  
Marcos De Donato ◽  
Major M Goodman ◽  
Claire G Williams

Abstract Maize meiotic mutant desynaptic (dy) was tested as a candidate recombination modifier gene because its effect is manifested in prophase I. Recombination rates for desynaptic (dy) and its wild type were compared in two ways: (1) segregation analysis using six linked molecular markers on chromosome 1L and (2) cytogenetic analysis using fluorescence in situ hybridization (FISH)-aided meiotic configurations observed in metaphase I. Chromosome 1L map lengths among the six linked markers were 45–63 cM for five F2 dy/dy plants, significantly lower than the wild-type F2 map distance of 72 cM. Chromosomes 2 and 6 were marked with rDNA FISH probes, and their map lengths were estimated from FISH-adorned meiotic configurations using the expectation-maximization algorithm. Chiasma frequencies for dy/dy plants were significantly reduced for both arms of chromosome 2, for chromosome arm 6L, and for eight unidentified chromosomes. There was a notable exception for the nucleolus-organizing region-bearing arm chromosome arm 6S, where dy increased chiasma frequency. Maize meiotic mutant desynaptic is a recombination modifier gene based on cytogenetic and segregation analyses.


Author(s):  
Quanya Tan ◽  
Chengshu Wang ◽  
Xin Luan ◽  
Lingjie Zheng ◽  
Yuerong Ni ◽  
...  

Abstract Key message Through substitution mapping strategy, two pairs of closely linked QTLs controlling stigma exsertion rate were dissected from chromosomes 2 and 3 and the four QTLs were fine mapped. Abstract Stigma exsertion rate (SER) is an important trait affecting the outcrossing ability of male sterility lines in hybrid rice. This complex trait was controlled by multiple QTLs and affected by environment condition. Here, we dissected, respectively, two pairs of tightly linked QTLs for SER on chromosomes 2 and 3 by substitution mapping. On chromosome 2, two linkage QTLs, qSER-2a and qSER-2b, were located in the region of 1288.0 kb, and were, respectively, delimited to the intervals of 234.9 kb and 214.3 kb. On chromosome 3, two QTLs, qSER-3a and qSER-3b, were detected in the region of 3575.5 kb and were narrowed down to 319.1 kb and 637.3 kb, respectively. The additive effects of four QTLs ranged from 7.9 to 9.0%. The epistatic effect produced by the interaction of qSER-2a and qSER-2b was much greater than that of qSER-3a and qSER-3b. The open reading frames were identified within the maximum intervals of qSER-2a, qSER-2b and qSER-3a, respectively. These results revealed that there are potential QTL clusters for SER in the two regions of chromosome 2 and chromosome 3. Fine mapping of the QTLs laid a foundation for cloning of the genes of SER.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 379-387 ◽  
Author(s):  
Naoya Shikazono ◽  
Atsushi Tanaka ◽  
Hiroshi Watanabe ◽  
Shigemitsu Tano

Abstract To elucidate the nature of structural alterations in plants, three carbon ion-induced mutations in Arabidopsis thaliana, gl1-3, tt4(C1), and ttg1-21, were analyzed. The gl1-3 mutation was found to be generated by an inversion of a fragment that contained GL1 and Atpk7 loci on chromosome 3. The size of the inverted fragment was a few hundred kilobase pairs. The inversion was found to accompany an insertion of a 107-bp fragment derived from chromosome 2. The tt4(C1) mutation was also found to be due to an inversion. The size of the intervening region between the breakpoints was also estimated to be a few hundred kilobase pairs. In the case of ttg1-21, it was found that a break occurred at the TTG1 locus on chromosome 5, and reciprocal translocation took place between it and chromosome 3. From the sequences flanking the breakpoints, the DNA strand breaks induced by carbon ions were found to be rejoined using, if present, only short homologous sequences. Small deletions were also observed around the breakpoints. These results suggest that the nonhomologous end-joining (NHEJ) pathway operates after plant cells are exposed to ion particles.


1987 ◽  
Vol 70 (3) ◽  
pp. 453-460 ◽  
Author(s):  
Patrizia Torrigiani ◽  
Maria Maddalena Altamura ◽  
Gabriella Pasqua ◽  
Barbara Monacelli ◽  
Donatella Serafini-Fracassini ◽  
...  

1999 ◽  
Vol 18 (11) ◽  
pp. 935-940 ◽  
Author(s):  
F. Carimi ◽  
F. De Pasquale ◽  
F. G. Crescimanno

Genome ◽  
1988 ◽  
Vol 30 (2) ◽  
pp. 138-146 ◽  
Author(s):  
P. E. Kaiser ◽  
J. A. Seawright ◽  
B. K. Birky

Ovarian polytene chromosomes from eight populations of Anopheles quadrimaculatus in the southeastern United States were observed for chromosomal polymorphisms. Two sibling species, species A and B, each with intraspecific inversions, were distinguished. Species A correlates with the previously published standard maps for salivary gland and ovarian nurse-cell polytene chromosomes. Species A was found at all eight collection sites, and five of these populations also contained species B. Three inversions on the right arm of chromosome 3 were observed in species A. Species B contained a fixed inversion on the X chromosome, one fixed and one floating inversion on the left arm of chromosome 2, and one fixed and one floating inversion on the right arm of chromosome 3. The fixed inversion on the X chromosome makes this the best diagnostic chromosome for distinguishing species A and B. An unusual dimorphism in the left arm of chromosome 3, found in both species A and B, contained two inversions. The heterokaryotypes, as well as two distinct homokaryotypes, were seen in all of the field populations. Intraspecific clinal variations in the frequencies of the species A inversions were noted. The Florida populations were practically devoid of inversions, the Georgia and Alabama populations contained some inversions, and the Arkansas population was mostly homozygous for two of the inversions. The phylogenetic relationships of species A and B to the Maculipennis complex (Nearctic) are discussed.Key words: Anopheles, inversion, populations, chromosome polymorphism, phylogenetics.


Sign in / Sign up

Export Citation Format

Share Document