epistatic effect
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 34)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Mian Abdur Rehman Arif ◽  
Monika Agacka-Mołdoch ◽  
Calvin O. Qualset ◽  
Andreas Börner

AbstractPlant genetic resources are stored and regenerated in > 1750 gene banks storing > 7,000,000 accessions. Since seeds are the primary storage units, research on seed longevity is of particular importance. Quantitative trait loci (QTL) analysis of 15 traits related to seed longevity and dormancy using 7584 high-quality SNPs recorded across 2 years and originated from five production years revealed a total of 46 additive QTLs. Exploration of the QTLs with epistatic effect resulted in the detection of 29 pairs of epistatic QTLs. To our information, this is only the second report of epistatic QTLs for seed longevity in bread wheat. We conclude that in addition to dense genetic maps, the epistatic interaction between loci should be considered to capture more variation which remained unnoticed in additive mapping.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010149
Author(s):  
Evan John ◽  
Silke Jacques ◽  
Huyen T. T. Phan ◽  
Lifang Liu ◽  
Danilo Pereira ◽  
...  

The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both ‘selfish’ and ‘altruistic’ characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhengjie Chen ◽  
Dengguo Tang ◽  
Kun Hu ◽  
Lei Zhang ◽  
Yong Yin ◽  
...  

Abstract Background Teosinte ear bears single spikelet, whereas maize ear bears paired spikelets, doubling the number of grains in each cupulate during maize domestication. In the past 20 years, genetic analysis of single vs. paired spikelets (PEDS) has been stagnant. A better understanding of genetic basis of PEDS could help fine mapping of quantitative trait loci (QTL) and cloning of genes. Results In this study, the advanced mapping populations (BC3F2 and BC4F2) of maize × teosinte were developed by phenotypic recurrent selection. Four genomic regions associated with PEDS were detected using QTL-seq, located on 194.64–299.52 Mb, 0–162.80 Mb, 12.82–97.17 Mb, and 125.06–157.01 Mb of chromosomes 1, 3, 6, and 8, respectively. Five QTL for PEDS were identified in the regions of QTL-seq using traditional QTL mapping. Each QTL explained 1.12–38.05% of the phenotypic variance (PVE); notably, QTL qPEDS3.1 with the average PVE of 35.29% was identified in all tests. Moreover, 14 epistatic QTL were detected, with the total PVE of 47.57–66.81% in each test. The QTL qPEDS3.1 overlapped with, or was close to, one locus of 7 epistatic QTL. Near-isogenic lines (NILs) of QTL qPEDS1.1, qPEDS3.1, qPEDS6.1, and qPEDS8.1 were constructed. All individuals of NIL-qPEDS6.1(MT1) and NIL-qPEDS8.1(MT1) showed paired spikelets (PEDS = 0), but the flowering time was 7 days shorter in the NIL-qPEDS8.1(MT1). The ratio of plants with PEDS > 0 was low (1/18 to 3/18) in the NIL-qPEDS1.1(MT1) and NIL-qPEDS3.1(MT1), maybe due to the epistatic effect. Conclusion Our results suggested that major QTL, minor QTL, epistasis and photoperiod were associated with the variation of PEDS, which help us better understand the genetic basis of PEDS and provide a genetic resource for fine mapping of QTL.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2400
Author(s):  
Tatjana A. Gavrilenko ◽  
Aleksander V. Khiutti ◽  
Natalia S. Klimenko ◽  
Olga Y. Antonova ◽  
Natalia A. Fomina ◽  
...  

Potato is one of the most important food crops in the world and also in the Russian Federation. Among harmful organisms reducing potato yield potential, the potato cyst nematodes (PCN) are considered to be ones of the most damaging pests. Information on PCN resistant cultivars is important for potato breeding and production. Russian potato cultivars are characterized in the state-bio-test program for resistance to only one PCN species Globodera rostochiensis and one pathotype Ro1 which is reported to be present in the country. This study aimed to find domestic cultivars with multiple resistances to different PCN species and different pathotypes using phenotyping coupled with molecular marker analysis due to the risk of the occasional introduction of new pests. The phenotypic response was determined by the inoculation of plants with pathotypes Ro5 of G. rostochiensis and Pa3 of G. pallida. The obtained results were supplemented by the state-bio-test data on resistance to Ro1 of G. rostochiensis. Nine of 26 Russian cultivars were resistant both to Ro5 and Ro1 pathotypes and two cultivars possess multiple resistances to both PCN species. Most tested molecular markers associated with the Gpa2, GpaVvrn, GpaVsspl, Grp1 loci showed discrepancies with phenotyping. However, a predictive haplotype and epistatic effect were detected.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Shen ◽  
Xinyang Xu ◽  
Yuejian Zhang ◽  
Xiaowei Niu ◽  
Weisong Shou

The rind appearance of melon is one of the most vital commercial quality traits which determines the preferences and behavior of consumers toward the consumption of melon. In this study, we constructed an F2 population derived from SC (mottled rind) and MG (non-mottled rind) lines for mapping the mottled rind gene(s) in melon. Genetic analysis showed that there were two dominant genes (CmMt1 and CmMt2) with evidence of epistasis controlling the mottled rind. Meanwhile, the phenotypic segregation ratio implied that the immature rind color had an epistatic effect on the mottled rind, which was regulated by CmAPRR2. A Kompetitive Allele-Specific PCR (KASP) DNA marker (CmAPRR2SNP(G/T)) was developed and shown to co-segregate with rind color, confirming that CmAPRR2 was CmMt1. Using bulked segregant analysis sequencing and KASP assays, CmMt2 was fine-mapped to an interval of 40.6 kb with six predicted genes. Functional annotation, expression analysis, and sequence variation analyses confirmed that AtCPSFL1 homolog, MELO3C026282, was the most likely candidate gene for CmMt2. Moreover, pigment content measurement and transmission electron microscopy analysis demonstrated that CmMt2 might participate in the development of chloroplast, which, in turn, decreases the accumulation of chlorophyll. These results provide insight into the molecular mechanism underlying rind appearance and reveal valuable information for marker-assisted selection breeding in melon.


2021 ◽  
Author(s):  
Haonan Cui ◽  
Chao Fan ◽  
Zhuo Ding ◽  
Xuezheng Wang ◽  
Lili Tang ◽  
...  

Abstract Cucumis melo L. is an economically important crop, the production of which is threatened by the prevalence of melon powdery mildew (PM) infections. We herein utilized the MR-1 (P1; resistant to PM) and M4-7 (P2; susceptible to PM) accessions to assess the heritability of PM (race 1) resistance in these melon plants. PM resistance in MR-1 leaves was linked to a dominant gene (CmPMRl), whereas stem resistance was under the control of a recessive gene (CmPMrs), with the dominant gene having an epistatic effect on the recessive gene. The CmPMRl gene was mapped to a 50 Kb interval on chromosome 12, while CmPMrs was mapped to an 89 Kb interval on chromosome 10. The CmPMRl candidate gene MELO3C002441 and the CmPMrs candidate gene MELO3C012438 were identified through sequence alignment, functional annotation, and expression pattern analyses of all genes within these respective intervals. MELO3C002441 and MELO3C012438 were both localized to the cellular membrane and were contained conserved NPR gene-like and MLO domains, respectively, which were linked to PM resistance. In summary, we identified patterns of PM resistance in the disease-resistant MR-1 melon cultivar, and conducted finally-mapping to identify two putative genes linked to resistance. Our results offer new genetic resources and markers guide the future molecular marker-assisted breeding of PM-resistant melon.


2021 ◽  
Author(s):  
Liu Jin ◽  
Xiaoding Ma ◽  
Huiying Zhou ◽  
Shuhui Li ◽  
Di Cui ◽  
...  

Abstract Climate change has a negative effect on rice production and food security. High temperature stress is a major obstacle and can significantly reduce yield. A set of recombinant inbred lines (RILs) derived from the cross between Longdao5 (heat-sensitive) and Zhongyouzao8 (heat-tolerant) was used in the identification of heat tolerant QTL. Spikelet fertility (SF) and heat tolerance (HT) indexes showed a significant difference among the parents and RILs population, and SF and HT have different of effect under natural and artificial high temperature conditions. Sixty-one QTLs were detected on chromosomes 1-8, 10 and 12, while 25, 27 and 14 additive QTLs were identified under the control, natural and artificial high temperature conditions, respectively. Pleiotropic effects and QTL hotspots are the key factors affecting these traits, three key major QTL clusters qHTSF1, qHTSF4, and qHTSF12 can be stably expressed. In addition, epistatic effect is an important component in the regulation of heat tolerance. A total of 17 pairs of epistatic interaction loci were detected, and these additive QTL clusters have a significant epistatic effect. Bulk segregant analysis (BSA) method was proved to be a convenient method to detect major QTLs. Three QTLs, namely qSF1, qSF2 and qSF12 were detected under high temperature environment, and there is a highly significant correlation among these addictive QTLs. These results will lay the foundation for the further fine mapping of these major QTLs and enrich the molecular marker-assisted selection of heat-tolerant gene resources in rice breeding.


2021 ◽  
Author(s):  
Evan John ◽  
Silke Jacques ◽  
Huyen Phan ◽  
Lifang Liu ◽  
Danilo Pereira ◽  
...  

The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in the Southern Hemisphere. The presence of PE401 ablates the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both selfish and altruistic characteristics. This offers an insight into a NE arms race that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.


2021 ◽  
Vol 50 (2) ◽  
pp. 351-358
Author(s):  
MT Hasan ◽  
AC Deb

Triple test cross analysis was carried out to detect the epistasis of thirteen yield and yield components in five chickpea (Cicer arietinum L.) crosses. Total epistatic effect was found to be non-significant for all the studied traits. Partitioning of total epistasis indicated the involvement of ‘i’ type (additive × additive) epistasis for DFF, PHFF, PWH, NPd/P, PdW/P, NS/P and SW/P in cross-1; NPBFF and NSBFF in cross-3 and for PHFF, DMF, PHMF and NSBMF in cross-5. The magnitude of additive component (D) was higher than that of the dominance component (H). Partial degree of dominance (√H/D) was observed for most of the traits. Both broad (h2b) and narrow (h2n) sense heritability were found to be moderately high. Positive and significant correlation between sums and differences indicated the direction of dominance towards decreasing parents and vice-versa. Bangladesh J. Bot. 50(2): 351-358, 2021 (June)


2021 ◽  
Vol 3 (69) ◽  
pp. 65-75
Author(s):  
Vadim Igorevich Lapshin ◽  
◽  
Valentina Vladimirovna Yakovenko ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document