scholarly journals HYSTERESIS OF SOIL–ROOT INTERFACE WATER POTENTIAL AND TRANSPIRATION IN RESPONSE TO SOIL DEHYDRATION FOR PRUNUS × CISTENA GROWN IN DIFFERENT SOIL MIXES

HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 250e-251
Author(s):  
Hui-lian Xu ◽  
Jean Caron ◽  
André Gosselin

Water potential at soil–root interface (ψ s-r) indicates soil water availability to the plants. It is related to plant water potential and transpiration. To know the characteristics of ψ s-r, in the plants under a subirrigation system, hysteresis of ψ s-r, as well as xylem water potential (ψ x) and transpiration were examined in response to soil dehydration for Prunus × cistena grown in three soil mixes: mix 1-composted bark, peat, and sand; mix 2—peat, bark, sand, and compost; and mix 3—peat, sawdust, and sand. When the soil mixes were dried from high to low water potential (ψ s), plants grown in mix 2 maintained higher ψ s-r, as well as higher ψ x and higher transpiration. However, when the soil mixes were dehydrated from the bottom, the relationships of ψ s-r, ψ x, and transpiration to ψ s showed strong hysteresis effect. ψ s-r was always lower at a given ψ s when soil was rewetted from dry to wet conditions than when soil was dried from wet conditions. ψ x and transpiration also showed hysteresis in response to soil dehydration. The extent of hysteresis was the largest in mix 2 and the smallest in mix 3. Hysteresis of ψ X or transpiration showed a similar trend to that of ψ s-r. This suggests that ψ s-r is a good indicator of soil water availability to the plants and more directly related to ψ X and transpiration than is ψ s. The difference in hysteresis of ψ s-r among soil mixes might be related to the properties of hydraulic conductance, which are determined by the soil texture. Hence, further study is needed to elucidate the mechanism of the hysteresis phenomenon.

1994 ◽  
Vol 24 (5) ◽  
pp. 1029-1032 ◽  
Author(s):  
B.J. Hawkins ◽  
S. McDonald

A 3 × 2 factorial experiment was conducted to investigate the interaction of temperature and soil water status on the growth, photosynthetic, transpiration, and nitrogen fixation rates of 2-month-old red alder (Alnusrubra Bong.) seedlings. Three day: night temperature treatments, 15:10 °C, 20:10 °C, and 25:10 °C were used. Two soil-water treatments kept pots between 85 and 100% of field capacity (wet) and 70–85% of field capacity (dry). Treatment effects on growth, net photosynthetic, transpiration and nitrogen fixation rates, plant water potential, and foliar nutrient concentration were measured over a 9-week period. The greatest seedling growth occurred at 25 °C day temperatures, while 20 and 25 °C days produced the greatest nodule growth. The allocation of biomass to roots increased with decreasing temperature. The highest rates of net photosynthesis occurred at 15 and 20 °C whereas transpiration was greatest at 25 °C. Plant water stress was greatest at 25 °C. The difference in plant water potential between the wet and dry treatments was only 0.04 MPa, which was not great enough to produce significant effects on growth or photosynthesis. Nitrogen fixation rates were highest in the wet treatment seedlings at 20 and 25 °C.


OENO One ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 269 ◽  
Author(s):  
Edoardo Antonio Costantino Costantini ◽  
Alessandro Agnelli ◽  
Pierluigi Bucelli ◽  
Aldo Ciambotti ◽  
Valentina Dell’Oro ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To evaluate the relationship between carbon isotope ratio (δ<sup>13</sup>C) and wine grape viticultural and oenological performance in organic farming.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The study was carried out for four years in the Chianti Classico wine production district (Central Italy), on five non irrigated vineyards conducted in organic farming. The reference variety was Sangiovese. Eleven sites were chosen for vine monitoring and grape sampling. The performance parameters were alcohol and must sugar content, sugar accumulation rate, mean berry weight, and extractable polyphenols. δ<sup>13</sup>C, stem water potential, and soil water availability were also monitored. Finally, soil nitrogen as well as yeast available nitrogen in the must were measured. δ<sup>13</sup>C was directly related to stem water potential and soil water deficit, and indicated a range of water stress conditions from none and moderate to strong. However, its relationship with viticultural and oenological results was contrary to expectation, that is, performance linearly increased along with soil moisture. On the other hand, the worst performance was obtained where both water and nitrogen were more limiting.</p><p style="text-align: justify;"><strong>Conclusions</strong>: The unexpected relationship between δ<sup>13</sup>C and Sangiovese performance was caused by low nitrogen availability. The studied sites all had low-fertility soils with poor or very poor nitrogen content. Therefore, in the plots where soil humidity was relatively higher, nitrogen plant uptake was favoured, and Sangiovese performance improved. Macronutrient being the main limiting factor, the performance was not lower in the plots where soil water availability was relatively larger. Therefore, the best viticultural result was obtained with no water stress conditions, at low rather than at intermediate δ<sup>13</sup>C values.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Water nutrition is crucial for wine grape performance. δ<sup>13</sup>C is a method used to assess vine water status during the growing season and to estimate vine performance. A good performance is expected at moderate stress and intermediate δ<sup>13</sup>C values. A better knowledge of the interaction between water and nutrient scarcity is needed, as it can affect the use of δ<sup>13</sup>C to predict vine performance.</p>


2014 ◽  
Vol 1 (1) ◽  
pp. 1013-1072
Author(s):  
D. R. Smart ◽  
S. Cosby Hess ◽  
R. Plant ◽  
O. Feihn ◽  
H. Heymann ◽  
...  

Abstract. The geoscience component of terroir in wine grape production continues to be criticized for its quasi-mystical nature, and lack of testable hypotheses. Nonetheless, recent relational investigations are emerging and most involve water availability as captured by available water capacity (AWC, texture) or plant available water (PAW) in the root zone of soil as being a key factor. The second finding emerging may be that the degree of microscale variability in PAW and other soil factors at the vineyard scale renders larger regional characterizations questionable. Cimatic variables like temperature are well mixed, and its influence on wine characteristic is fairly well established. The influence of mesogeology on mesoclimate factors has also been characterized to some extent. To test the hypothesis that vine water status mirrors soil water availability, and controls fruit sensory and chemical properties at the vineyard scale we examined such variables in a iconic, selectively harvested premium winegrape vineyard in the Napa Valley of California during 2007 and 2008 growing seasons. Geo-referenced data vines remained as individual study units throughout data gathering and analysis. Cartographic exercises using geographic information systems (GIS) were used to vizualize geospatial variation in soil and vine properties. Highly significant correlations (P < 0.01) emerged for pre-dawn leaf water potential (ΨPD), mid-day leaf water potential (ΨL) and PAW, with berry size, berry weight, pruning weights (canopy size) and soluble solids content (°Brix). Areas yielding grapes with perceived higher quality had vines with (1) lower leaf water potential (LWP) both pre-dawn and mid-day, (2) smaller berry diameter and weight, (3) lower pruning weights, and (4) higher °Brix. A trained sensory panel found grapes from the more water-stressed vines had significantly sweeter and softer pulp, absence of vegetal character, and browner and crunchier seeds. Metabolomic analysis of the grape skins showed significant differences in accumulation of amino acids and organic acids. Data vines were categorized as non-stressed (ΨPD ≥ −7.9 bars and ΨL ≥ −14.9 bars) and stressed (ΨPD ≤ −8.0 bars and ΨL ≤ −15.0 bars) and subjected to analysis of variance. Significant separation emerged for vines categorized as non-stressed versus stressed at véraison, which correlated to the areas described as producing higher and lower quality fruit. This report does not advocate the use of stress levels herein reported. The vineyard was planted to a vigorous, deep rooted rootstock (V. rupestris cv. St. George), and from years of management is known to be able to withstand stress levels of the magnitude we observed. Nonetheless, the results may suggest there is not a linear relationship between physiological water stress and grape sensory characteristics, but rather the presence of an inflection point controlling grape composition as well as physiological development.


1984 ◽  
Vol 102 (2) ◽  
pp. 415-425 ◽  
Author(s):  
M. McGowan ◽  
P. Blanch ◽  
P. J. Gregory ◽  
D. Haycock

SummaryShoot and root growth and associated leaf and soil water potential relations were compared in three consecutive crops of winter wheat grown in the same field. Despite a profuse root system the crop grown in the second drought year (1976) failed to dry the soil as throughly as the crops in 1975 and 1977. Measurements of plant water potential showed that the restricted utilization of soil water reserves by this crop was associated with failure to make any significant osmotic adjustment, leading to premature loss of leaf turgor and stomatal closure. The implications of these results for models to estimate actual crop evaporation from values of potential evaporation are discussed.


1988 ◽  
Vol 68 (4) ◽  
pp. 957-967 ◽  
Author(s):  
D. L. SMITH ◽  
M. DIJAK ◽  
D. J. HUME

White bean (Phaseolus vulgaris L.) is generally reported to fix less N than soybean (Glycine max Merrill [L.]). Recent work has shown that in soybean the onset of physiological responses that conserve plant and soil water occurs at greater water deficits than in some other legumes. Little is known about water use regulation in white bean. Research was conducted to compare the responses of these two species to water deficit, particularly its effects on N2 fixation, in both controlled environment and field conditions. In the growth room, plant water potential, leaf diffusive resistance, acetylene reduction and nodule mass per plant were measured for both species during progressive drought, and compared to watered controls. In the field, the leaf diffusive resistance of irrigated and unirrigated plants of both species was measured, as was the soil water potential in plots where these crops were grown. Under conditions of increasing water deficit white bean reacts to conserve plant and soil water sooner than soybean: closing its stomates earlier under drought conditions and maintaining higher plant water potentials. White bean acetylene reduction declined more rapidly over time and over plant water potential levels, but not over changes in leaf diffusive resistance, than that of soybean, as the droughting progressed. In the field, under drought conditions, white bean root nodules senesced, while soybean nodules did not, and white bean was observed to exhibit more parahelionasty than soybean. The onset of physiological responses that conserve plant and soil water occurred at lesser water deficits in white bean than soybean, and this was reflected in more extreme effects on N2 fixation by white bean.Key words: White bean, soybean, water deficit, acetylene reduction, nitrogen fixation, nodulation


1968 ◽  
Vol 48 (1) ◽  
pp. 89-95 ◽  
Author(s):  
S. J. Yang ◽  
E. de Jong

The thermocouple psychrometer technique was used to measure plant water stresses of wheat. The usefulness of this technique is limited due to the many precautions that must be taken. The β-ray absorption and relative turgidity were highly correlated (P = 0.01) with plant water potential, but the correlation changed with age. Relative turgidity gave a slightly better estimate of leaf water potential than β-ray absorption (r2 of 0.88 to 0.99 and 0.81 to 0.96 respectively). The β-ray technique has great promise because of its non-destructive nature.At soil water potentials higher than −10 atm, plant water potentials remained nearly constant, indicating that soil water was equally available. Temporary wilting occurred at soil water potentials of −35 to −40 atm.


Sign in / Sign up

Export Citation Format

Share Document