scholarly journals 360 ORIGIN, INHERITANCE, AND EFFECTS OF A DWARFING GENE FROM THE CITRUS ROOTSTOCK PONCIRUS TRIFOLIATA `FLYING DRAGQN'

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 482e-482
Author(s):  
Mikeal L. Roose ◽  
Frank Suozhan Cheng ◽  
Claire T. Federici

The `Flying Dragon' cultivar of Poncirus trifoliata L. Raf. is a strongly dwarfing rootstock for Citrus cultivars, reducing canopy volume of 9 year-old `Valencia' orange trees to 1/3 that of trees on standard rootstocks Open-pollinated seed of `Flying Dragon' was screened with isozyme markers to distinguish zygotic from nucellar (apomictic) seedlings. All zygotics had genotypes consistent with an origin by self-pollination. Zygotic seedlings were budded with `Valencia' orange scion and planted in the field. Of 46 progeny evaluated as rootstocks, 35 produced small trees similar to those on nucellar `Flying Dragon' and 11 produced large trees. This ratio is consistent with the 3:1 segregation expected for a single dominant gene. The dwarfing gene was closely linked, or pleiotropic with a gene causing curved thorns and stems. Several RAPD markers close to the dwarfing gene were identified with bulked segregant analysis. `Flying Dragon' apparently originated as a mutation because it had au identical genotype to non-dwarfing strains of trifoliate orange at all 38 isozyme and RFLP markers tested

1995 ◽  
Vol 120 (2) ◽  
pp. 286-291 ◽  
Author(s):  
Frank Suozhan Cheng ◽  
Mikeal L. Roose

`Flying Dragon' Poncirus trifoliata L. Raf. is a dwarfing rootstock for citrus. Inheritance of dwarfing ability was studied in a population of open-pollinated seedlings of `Flying Dragon'. Molecular marker genotypes suggest that all seedlings originated from selfing. Progeny seedlings were budded with `Cutter Valencia' orange and planted in the field to evaluate the dwarfing effect of the seedling rootstock. At 5 years after planting, rankit analysis of the frequency distributions of trunk cross-sectional area and canopy volume suggested the presence of two overlapping distributions of 34 dwarf trees and 7 nondwarf. This ratio is consistent with inheritance of rootstock dwarfing as a single dominant gene for which `Flying Dragon' is heterozygous. Two morphological characteristics of `Flying Dragon', curved thorns and twisted trunk growth, were closely linked to, or pleiotropic effects of, the dwarfing gene. Bulked segregant analysis was used to identify three RAPD markers linked to the dwarfing gene. `Flying Dragon' was identical to nondwarfing cultivars of trifoliate orange at 40 homozygous and heterozygous isozyme and RFLP markers; therefore, it is likely that `Flying Dragon' originated as a mutant of a nondwarfing genotype and has not undergone sexual recombination since this event.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 883-890
Author(s):  
D Q Fang ◽  
C T Federici ◽  
M L Roose

Abstract Resistance to citrus tristeza virus (CTV) was evaluated in 554 progeny of 10 populations derived from Poncirus trifoliata. A dominant gene (Ctv) controlled CTV resistance in P. trifoliata. Twenty-one dominant PCR-based DNA markers were identified as linked to Ctv by bulked segregant analysis. Of the 11 closest markers to Ctv, only 2 segregated in all populations. Ten of these markers were cloned and sequenced, and codominant RFLP markers were developed. Seven RFLP markers were then evaluated in 10 populations. Marker orders were consistent in all linkage maps based on data of single populations or on combined data of populations with similar segregation patterns. In a consensus map, the six closest marker loci spanned 5.3 cM of the Ctv region. Z16 cosegregated with Ctv. C19 and AD08 flanked Ctv at distances of 0.5 and 0.8 cM, respectively. These 3 markers were present as single copies in the Poncirus genome, and could be used directly for bacterial artificial chromosome library screening to initiate a walk toward Ctv. BLAST searches of the GenBank database revealed high sequence similarities between 2 markers and known plant disease resistance genes, indicating that a resistance gene cluster exists in the Ctv region in P. trifoliata.


1993 ◽  
Vol 33 (3) ◽  
pp. 363 ◽  
Author(s):  
BK Taylor ◽  
RT Dimsey

Four long-term citrus rootstock trials (navel orange, mandarin, Valencia orange, and lime soil trial) established at Irymple, in the Sunraysia district of Victoria, were tested for leaf nutrient composition in each of 2 years. Scion or rootstock significantly influenced leaf nutrient composition in orange and mandarin trees in all 4 trials. Poncirus trifoliata and citrange rootstocks and Ellendale tangor scion resulted in high to moderate leaf N, P, and K concentrations, while Symons sweet orange rootstock and Dancy mandarin gave low leaf nitrogen (N), phosphorus (P), and potassium (K) concentrations. Potassium concentrations of navel and Valencia oranges on rough lemon rootstock were lower than on most of the other rootstocks tested. For all rootstocks, however, leaf N, P, and K concentrations were in the high range in the navel orange and Valencia orange trials, while leaf K concentrations were in the high range in the mandarin trial. Citrange rootstocks and Ellendale scion also had higher concentrations of leaf magnesium (Mg), while Symons sweet orange, Cox sweet orange, and Rangpur lime had lower leaf Mg concentrations than other rootstocks and scions. In the Valencia rootstock trial, rough lemon and Rangpur lime induced the highest leaf sulfur concentrations, while citrange rootstocks gave the lowest. Soil depth in the lime soil trial influenced foliar P and K levels in Valencia orange trees but these differences were small. In all trials, rootstock, but not scion, strongly influenced chloride (Cl) concentrations of citrus leaves. Poncirus trifoliata rootstock accumulated high concentrations of Cl, and the citrange rootstocks moderate, while Cleopatra mandarin rootstock showed consistently low leaf C1 concentrations in all trials. Rough lemon rootstock was not consistently good at excluding C1, and Rangpur lime showed good C1 exclusion only in the Valencia rootstock trial. There was no evidence of a negative relationship between uptake of N and C1 by citrus rootstocks. Poncirus trifoliata had a lower uptake of sodium (Na) in the Valencia rootstock trial, while Cleopatra and Emperor mandarin rootstocks showed slightly higher leaf Na levels than most other rootstocks tested. The 2 citranges, mandarin, rough lemon, and Rangpur lime rootstocks induced higher boron (B) concentrations in leaves of navel orange compared with other rootstocks but they were still in the adequate range for citrus (Reuter and Robinson 1986), while sweet orange rootstocks had lower levels. Emperor mandarin scion on all rootstocks tested had the lowest B levels. Concentrations of iron and copper were rarely influenced by scion or rootstock. Rootstock significantly influenced leaf manganese (Mn) and zinc (Zn) levels in a number of trials, but scion effects were minor. In comparison with all other rootstocks, rough lemon induced higher Mn levels in some cases; sweet orange rootstocks gave higher leaf Zn levels in other cases; while Rangpur lime induced higher Mn and Zn levels in trees grown in the lime soil trial. In the first 3 trials, concentrations of Zn and Mn were low in many of the rootstocks and scions, indicating a need for a second micronutrient spray per growing season.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 421D-421
Author(s):  
M.M. Khattab ◽  
A.A. Elezaby ◽  
S. ElOraby ◽  
A.M. Hassan

This investigation was carried out on 13-year-old Valencia orange trees [Citrus sinensis (L.) Osbeck] budded on five different rootstocks. Heat unit accumulation (temperature above 12.5 °C) for fruits worked on the various rootstocks were calculated from full bloom to maturity stage. Valencia fruits on Troyer citrange (C. sinensis × Poncirus trifoliata) and Carrizo citrange (C. sinensis × Poncirus trifoliata) rootstocks matured earlier when compared to those growing on Cleopatra mandarin (C. reticulata Blanco), Volkamer lemon (C. volkameriana Ten. and Pasq.), and sour orange (C. aurantium) rootstocks. The results showed that the Valencia fruits, regardless of rootstock, could be stored for different periods under different conditions. However, in order to avoid degradation in fruit quality, storing periods should not exceed 21, 60, and 120 days under room conditions (25 °C and RH 25% to 35%), 4 °C (RH 80% to 85%), and 8 °C (RH 80% to 85%); respectively.


HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 62-65 ◽  
Author(s):  
Frederick S. Davies ◽  
Glenn R. Zalman

Several studies suggest that optimum N rate and application frequency differ among citrus rootstocks. `Rhode Red' valencia orange trees [Citrus sinensis (L.) Osb.] on three rootstocks, C. volkameriana Ten. and Pasq., `Carrizo' citrange [C. sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.], and `Swingle' citrumelo [C. paradisi Macf. × P. trifoliata (L.) Raf.], were used to determine if N rate and application frequency should be adjusted, based on rootstock, during the first 3 years in the field. Treatments were arranged in a 3×3×3 (rootstock, N rates, N application frequency, respectively) factorial experiment. Annual N application rates ranged from 68 to 272 g/tree depending on tree age, and N was applied biweekly, weekly or monthly. Application frequency had no effect on trunk diameter or leaf N concentration in any year. Rootstock had a significant effect on growth in all 3 years, with trees on C. volkameriana being largest and having the greatest yields, followed by those on `Carrizo' and `Swingle', respectively. Trees on C. volkameriana were larger than those on the other rootstocks because they were larger at planting, grew over a longer period during the year, and often grew at a faster rate. Nitrogen rate had no effect on growth during the first 2 years in the field, but the highest N rate increased yields in year 3 for trees on C. volkameriana and `Swingle' rootstocks. Interaction between rootstock and N rate was nonsignificant for trunk diameter, but it was significant for yield, suggesting that trees on C. volkameriana responded more to increased N than did those on the other rootstocks.


Genome ◽  
2009 ◽  
Vol 52 (1) ◽  
pp. 95-99 ◽  
Author(s):  
Wenguang Cao ◽  
Daryl J. Somers ◽  
George Fedak

A male sterile wheat mutant, Triticum aestivum L. ‘Taigu’, was found in a wheat field in China in 1972. The male sterility was controlled by a single dominant gene that was referred to as Ms2. Recently, this gene was found to be linked to a dwarfing gene through crossing Taigu with the short wheat T. aestivum ‘Ai-Bian 1’ carrying the dwarfing gene Rht-D1c. The objective of this study was to develop molecular markers linked to the male sterility Ms2 gene in common wheat. One hundred and twenty-two near-isogenic lines were developed through backcrossing and sib intercrossing and used as the mapping population for the development of molecular markers. Bulked segregant analysis was used to screen 48 pairs of SSR primers, and a marker, MS2-WMC617, was identified closely linked to the male sterile Ms2 gene that mapped at the distal position of chromosome arm 4DS. The use of the molecular marker MS2-WMC617 can facilitate recurrent selection in a wheat breeding program based on marker-assisted selection.


2004 ◽  
Vol 39 (1) ◽  
pp. 55-60 ◽  
Author(s):  
José Antônio Quaggio ◽  
Dirceu Mattos Junior ◽  
Heitor Cantarella ◽  
Eduardo Sanches Stuchi ◽  
Otávio Ricardo Sempionato

The majority of citrus trees in Brazil are grafted on 'Rangpur lime' (Citrus limonia Osb.) rootstock. Despite its good horticultural performance, search for disease tolerant rootstock varieties to improve yield and longevity of citrus groves has increased. The objective of this work was to evaluate yield efficiency of sweet oranges on different rootstocks fertilized with N, P, and potassium. Tree growth was affected by rootstock varieties; trees on 'Swingle' citrumelo [Poncirus trifoliata (L.) Raf. × C. paradisi Macf.] presented the smallest canopy (13.3 m³ in the fifth year after tree planting) compared to those on 'Rangpur lime' and 'Cleopatra' mandarin [C. reshni (Hayata) hort. ex Tanaka] grown on the same grove. Although it was observed an overall positive relationship between canopy volume and fruit yield (R² = 0.95**), yield efficiency (kg m-3) was affected by rootstocks, which demonstrated 'Rangpur lime' superiority in relation to Cleopatra. Growth of citrus trees younger than 5-yr-old might be improved by K fertilization rates greater than currently recommended in Brazil, in soils with low K and subjected to nutrient leaching losses.


Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 697-704 ◽  
Author(s):  
Zhanao Deng ◽  
Shunyuan Xiao ◽  
Shu Huang ◽  
Frederick G. Gmitter Jr.

Twelve new dominant randomly amplified polymorphic DNA (RAPD) fragments associated with a single dominant gene for resistance to citrus tristeza virus (CTV) were identified using bulked segregant analysis of an intergeneric backcross family. These and eight previously reported RAPDs were mapped in the resistance gene (Ctv) region; the resulting localized linkage map spans about 32 cM, with nine close flanking markers within 2.5 cM of Ctv. Seven of 20 RAPD fragments linked with the resistance gene were cloned and sequenced, and their sequences were used to design longer primers to develop sequence characterized amplified region (SCAR) markers that can be utilized reliably in marker-assisted selection, high-resolution mapping, and map-based cloning of the resistance gene. All seven cloned RAPDs were converted successfully into SCARs by redesigning primers, optimizing PCR parameters (especially the annealing temperature), or digesting amplification products with restriction enzymes. Four of the seven remained dominant markers, displaying presence–absence polymorphism patterns; the other three detected restriction site changes or length variations and thus were transformed into codominant markers. Two genomic regions rich in variability were also detected by two codominant SCAR markers.Key words: RAPD, gene mapping, citrus tristeza virus resistance.


1977 ◽  
Vol 28 (6) ◽  
pp. 1041 ◽  
Author(s):  
GI Moss ◽  
KB Bevington

The effect of spraying commercial gibberellic acid (GA) on alternate cropping and yield of Late Valencia orange trees was studied in detail at three sites over three seasons. Two applications of GA were applied at a minimum concentration of 25 ppm (in two experiments 0.75% emulsifiable oil was used as an adjuvant) 3 weeks apart during April and May for Dareton (on the River Murray) or June and early July for Yanco (Murrumbidgee Irrigation Areas) prior to the heavy-crop blossom. These sprays partly inhibited flowering and the subsequent heavy crop was reduced by up to 22% (by fruit number). In the next season there were more flowers and the light crop was increased by up to 57% at Dareton and 228% at Yanco. Some treatments practically eliminated alternate cropping while all reduced considerably the heavyllight crop ratio. Mean weight yields over 2 years were increased by up to 17% at Yanco and 16% at Dareton with mean increases for all successful GA treatments of 12.6% and 7.2% respectively. This represented an increase of 34 and 24 kg fruitltree. No long-term adverse effects on yield were found.Apart from re-greening of the fruit present at the time of spraying, fruit quality was not affected. There were fewer non-saleable small fruit at Yanco in the heavy crop as a result of the GA treatments, and a better range of fruit sizes in both the heavy and light crops. Trees on Rough Lemon rootstock responded well to GA treatments, especially in terms of increased yield in the light crop. Poncirus trifoliata rootstock was less responsive than Sweet Orange. This method might be used for the commercial control of alternate cropping of Late Valencia orange trees.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 895E-896
Author(s):  
A.M. Akl*

This study was conducted during 2002 and 2003 seasons to select the best citrus rootstocks for young `Valencia' orange trees grown under soil salinity stress. Six citrus rootstocks namely Volkamer lemon, Cleopatra mandarin, Troyer citrange, Rough lemon, Egyptian lime, and Sour orange were tested. Four soil salinity levels, namely, 0.0%, 0.1%, 0.2%, and 0.4% were examined. Results showed that growth criteria, plant pigments and percentages of N, P, and K in the leaves of `Valencia' orange onto all citrus rootstocks tended to reduce with raising soil salinity. The harmful effects imposed by soil salinity was `Valencia' orange on Volkamer lemon, Cleopatra mandarin Troyer citrange, Rough lemon, Egyptian lime, and Sour orange, in asending order. Results proved the superiority of Volkamer lemon, Cleopatra mandarin, and Trouyer citrange rootstocks for `Valencia' orange transplants grown under salinity conditions as compared to the other rootstocks. `Valencia' orange on such promising rootstocks could tolerate soil salinity until 0.20% without adverse effects on growth of transplants. Sour orange rootstock seems to be the lowest suitable stock for `Valencia' orange tansplants grown under soil salinity conditions.


Sign in / Sign up

Export Citation Format

Share Document