scholarly journals FERTILIZATION VALUE OF THREE ORGANIC RESIDUES AS AN AMENDMENT TO MEDIA USED TO PRODUCE CONTAINER-GROWN WOODY ORNAMENTAL PLANTS

HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 192d-192
Author(s):  
Mondher Bouden ◽  
Jaaues-Andre Rioux ◽  
Isabelle Duchesne

The agricultural valorization of waste, rich in organic matter and minerals, is one of the best economical and ecological methods of disposal. This study was carried out to evaluate the release of mineral elements restrained in fresh bio-filters, composted sewage sludges, and composted de-inking sludges, and their effects on growth of Physocarpus opulifolius `Nanus' produced in containers. The physical and chemical analysis of the organic residues proved that the fertilization value of composted sewage sludges was greater than the other residues. Moreover, the granular characteristics of fresh biofilters and composted de-inking sludges were finer than composted sewage sludges. Each organic residue was combined, in proportion of 10%, with peatmoss, composted conifer bark, and fine crushed gravel. The regular leaching of container medium showed that the composted sewage sludges release a higher quantity of major mineral elements. Physocarpus opulifolius `Nanus' plants were larger than those plants grown in the control substrate (without residue). The results obtained in media containing fresh bio-filters or composted de-inking sludges were similar to those obtained in the control substrate.

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 799E-799
Author(s):  
Mondher Bouden ◽  
Jacques-Andre Rioux ◽  
Isabelle Duchesne

Three ornamental species (Spiraea japonica `Little Princess', Physocarpus opulifolius `Nanus', and Prunus × cistena) were potted in seven different substrates. The control substrate contained peatmoss, composted conifer bark, and fine crushed gravel (5:4:1, by volume). In the other six substrates, peatmoss was partially or completely substituted by different proportions of three organic residues (10% or 50% of the mixture made up of fresh bio-filters, 5% or 10% in composted sewage sludges, and 10% or 40% in composted deinking sludges). Four fertilization regimes (0, 200, 400, and 600 mg N/liter in the form of soluble fertilizer 20–20–20) were applied weekly onto containers. The experimental design was a split-plot with six replications. Physical and chemical analysis of the organic residues proved that the composted sewage sludges were richer in minerals than the other residues. Moreover, fresh bio-filters and composted deinking sludges were less granular than composted sewage sludges. The 10% proportion of each organic residue, combined with the other materials, was the most-adequate proportion and did not reduce the growth of plants (height, aerial and root dry matter). In addition, a dose of 400 mg·liter–1 generally gave good results, especially for fresh bio-filters and for composted sewage sludges. However, it is preferable to use a higher dose (600 mg·liter–1 if composted deinking sludges are used.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2419
Author(s):  
Marden Daniel Espinoza Guardiola ◽  
José Frutuoso Vale Júnior ◽  
Edmilson Evangelista da Silva ◽  
Celeste Queiroz Rossi ◽  
Marcos Gervasio Pereira

The crop-livestock integration (CLI) and crop-livestock-forest integration (CLFI) management systems, have been shown to be viable approaches for increasing carbon sequestration in soils, resulting in the improvement of physical and chemical soil attributes. The objective of this study was to evaluate the chemical attributes and organic matter in soils under Natural Forest (NF) converted to different uses and managed differently: rotational pasture area (PAST), crop-livestock integration (CLI), and crop-livestock-forest integration (CLIF). The research was conducted at the São Paulo farm, in Iracema, located in the south-central region of the state of Roraima, Brazil. The studied soil type was classified as Ultisol. Soil samples were taken by opening ditches and examining layers at 0.1-m depth intervals from surface to 0.60-m depth. Total organic carbon (TOC), chemical and granulometric fractionation of soil organic matter (SOM), oxidizable fractions, and light organic matter in water were analyzed. Our results showed low levels of the analyzed chemical elements, a characteristic of a soil with low natural fertility. This matches conditions inherent in source material, weathered by high rainfall, a warm and humid climate, and flat topographic relief. In the 0-0.1 m layer, the PAST and CLI systems had the highest TOC contents relative to the other systems studied. At other depths, there were no statistical differences among TOC levels. The highest concentration of C in the particulate fraction (POC) was noted in the surface layer in all management systems. The pasture system had the highest concentration POC in the top 0.10 m. Our results also showed that the upper 0.10 m of soil in NF contained the lowest content of organic carbon associated with mineral (MOC) relative to the managed agrosystems. In addition, humin provided the largest contribution to SOM in all evaluated management systems. The crop-livestock integration (CLI) and crop-livestock integration forest (CLIF) systems, emerged as a strong alternative to carbon incorporation and subsequently the improvement of physical and chemical soil attributes. The objective of this work to evaluate the chemical attributes and organic matter in soils under Natural forest (NF) converted into different use and management systems: pasture (PAST), crop-livestock Integration (CLI) and crop-livestock Integration forest (CLIF). The research was conducted at São Paulo farm in Iracema, located in the Center-South region of the State of Roraima, Brazil. The soil studied was classified as Argissolo Amarelo Distrófico. The samples were taken by the opening of trenches in layers of 0-0.10, 0.10- 0.20, 0.20- 0.40, and 0.40-0.60 m depth. Total organic carbon (TOC), chemical and granulometric fractionation of soil organic matter (SOM), oxidizable fractions and organic matter in water were analyzed. The results showed low levels of the analyzed chemical elements which characterizes soils with low natural fertility, which matches the conditions of the source material, high rainfall and regional temperature, as well as the flat local relief. In the 0-0.1 m layer, the PAST and CLI systems had the highest TOC contents when compared to the other systems studied, in the other depths there were no statistical differences between the TOC levels. The highest amount of C in the particulate fraction (COp) was verified in the surface layer in all evaluated management systems. The pasture area was the system with the greatest contribution of COp to the depth of 0-0.0 m. In relation to the carbon content associated with minerals (COam), the results showed that the depth of 0-0.05 m NF area presented the lowest levels when compared to the other systems. Regarding the humic substances, there was a larger contribution of humin in all evaluated systems.


2017 ◽  
Vol 30 (1) ◽  
pp. 78-86
Author(s):  
JULIANA AUGUSTA MOURA ◽  
◽  
MARIA ISIDÓRIA SILVA GONZAGA ◽  
THIAGO LIMA DA SILVA ◽  
DANIELLE VIEIRA GUIMARAES ◽  
...  

ABSTRACT The use of organic residues and compost is a common practice to improve soil quality and content of organic matter. In this study, the labile and stable fractions of soil organic matter were evaluated after application of layers of fresh (non-composted) or composted organic residues in a 6-year-old citrus orchard. The experiment was set up as a randomized block design, with 6 treatments: control without NPK, control with NPK, non-composted organic residue (NCOR, with and without NPK), and composted organic residue (humus, with and without NPK), with three replicates. The treatments were applied under the plant canopy. Soil samples were collected from the 0-0.05, 0.05-0.10, and 0.10-0.15 m layers. There were increases of 10.3, 22.4, 16.3, and 37.1 % in the organic carbon contents of the surface soil for the treatments using NCOR without NPK, NCOR with NPK, humus with NPK, and humus without NPK, respectively. The organic carbon contents of the labile fraction varied from 1.0 to 12.8 g kg-1, representing between 8 and 62 % of the total carbon. The carbon concentrations in the stable fraction varied from 3.1 to 9.7 g kg-1, representing between 38 and 92 % of the total carbon, and this was the dominant fraction for most of the treatments.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2419
Author(s):  
Marden Daniel Espinoza Guardiola ◽  
José Frutuoso Vale Júnior ◽  
Edmilson Evangelista da Silva ◽  
Celeste Queiroz Rossi ◽  
Marcos Gervasio Pereira

The crop-livestock integration (CLI) and crop-livestock-forest integration (CLFI) management systems, have been shown to be viable approaches for increasing carbon sequestration in soils, resulting in the improvement of physical and chemical soil attributes. The objective of this study was to evaluate the chemical attributes and organic matter in soils under Natural Forest (NF) converted to different uses and managed differently: rotational pasture area (PAST), crop-livestock integration (CLI), and crop-livestock-forest integration (CLIF). The research was conducted at the São Paulo farm, in Iracema, located in the south-central region of the state of Roraima, Brazil. The studied soil type was classified as Ultisol. Soil samples were taken by opening ditches and examining layers at 0.1-m depth intervals from surface to 0.60-m depth. Total organic carbon (TOC), chemical and granulometric fractionation of soil organic matter (SOM), oxidizable fractions, and light organic matter in water were analyzed. Our results showed low levels of the analyzed chemical elements, a characteristic of a soil with low natural fertility. This matches conditions inherent in source material, weathered by high rainfall, a warm and humid climate, and flat topographic relief. In the 0-0.1 m layer, the PAST and CLI systems had the highest TOC contents relative to the other systems studied. At other depths, there were no statistical differences among TOC levels. The highest concentration of C in the particulate fraction (POC) was noted in the surface layer in all management systems. The pasture system had the highest concentration POC in the top 0.10 m. Our results also showed that the upper 0.10 m of soil in NF contained the lowest content of organic carbon associated with mineral (MOC) relative to the managed agrosystems. In addition, humin provided the largest contribution to SOM in all evaluated management systems. The crop-livestock integration (CLI) and crop-livestock integration forest (CLIF) systems, emerged as a strong alternative to carbon incorporation and subsequently the improvement of physical and chemical soil attributes. The objective of this work to evaluate the chemical attributes and organic matter in soils under Natural forest (NF) converted into different use and management systems: pasture (PAST), crop-livestock Integration (CLI) and crop-livestock Integration forest (CLIF). The research was conducted at São Paulo farm in Iracema, located in the Center-South region of the State of Roraima, Brazil. The soil studied was classified as Argissolo Amarelo Distrófico. The samples were taken by the opening of trenches in layers of 0-0.10, 0.10- 0.20, 0.20- 0.40, and 0.40-0.60 m depth. Total organic carbon (TOC), chemical and granulometric fractionation of soil organic matter (SOM), oxidizable fractions and organic matter in water were analyzed. The results showed low levels of the analyzed chemical elements which characterizes soils with low natural fertility, which matches the conditions of the source material, high rainfall and regional temperature, as well as the flat local relief. In the 0-0.1 m layer, the PAST and CLI systems had the highest TOC contents when compared to the other systems studied, in the other depths there were no statistical differences between the TOC levels. The highest amount of C in the particulate fraction (COp) was verified in the surface layer in all evaluated management systems. The pasture area was the system with the greatest contribution of COp to the depth of 0-0.0 m. In relation to the carbon content associated with minerals (COam), the results showed that the depth of 0-0.05 m NF area presented the lowest levels when compared to the other systems. Regarding the humic substances, there was a larger contribution of humin in all evaluated systems.


2003 ◽  
Vol 21 (1) ◽  
pp. 11-15
Author(s):  
Todd L. Mervosh

Abstract The herbicides isoxaben (Gallery) and oryzalin (Surflan) are commonly used to prevent weed emergence around ornamental plants in nurseries and landscapes. Saturated batch experiments were conducted in the laboratory to generate equilibrium sorption isotherms for these herbicides in soils and container media. Soils consisted of [A] a sandy loam containing 1.24% organic matter (by wt) after sieving, and [B] a silt loam containing 1.36% organic matter (by wt) after sieving. Container media obtained from nurseries consisted of [C] a mixture of 50% peat and 50% sand (by vol) containing 18.5% organic matter (by wt) after sieving, and [D] a mixture of 70% bark, 25% peat, and 5% fine stone (by vol) containing 34.9% organic matter (by wt) after sieving. Sorption isotherms were generated from these data. Based on sorption coefficients (Kd, Kf), container mix D sorbed both herbicides to a much greater extent than did the other substrates. Oryzalin sorption was greater than isoxaben sorption in each soil and container mix. For oryzalin, organic carbon partition coefficient (Koc) values in the soils were greater than those in the container mixes. Compositional differences in organic matter between soils and container media may account for differences in herbicide sorption in these media.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 449b-449
Author(s):  
Mondher Bouden ◽  
Jacques-Andre Rioux

The use of waste in ornamental culture seems to be the best optional method of disposal. However, the amount of available mineral elements in organic residues is not equilibrated with the mineral needs of plants. In this context, this study was performed to evaluate the influence of fresh bio-filters (FBF), composted sewage sludges (CSS), and composted de-inked sludges (CDS) on the mineral composition of substrate water solution. Substrates containing 10% of each organic residues and control substrate (4 peatmoss, 5 composted conifer bark, and 1 fine crushed gravel, by volume) were potted in 5-L containers. An experiment was conducted with Physocarpus opulifolius `Nanus' plants and a soluble fertilizer 20N–20P–20K (400 mg/L of N). Another experiment was carried out without plants and without fertilization. In the two experiments, the four substrates were randomized in a complete block design with six replications. All containers were watered every 2 weeks until leaching (inspired by the pour-through method described by Wright, 1986) and a sample of each leachate was collected for analysis. Growth parameters were statistically analyzed. The content of nutrient elements in the water solution of substrates with plants and with fertilization was higher than their content in the water solution of substrates without plants and without fertilization. However, the content of heavy metals was quite similar with the two fertilization regimes and was below the undesirable limits. Substrates amended with CSS released a higher quantity of P, K, S, and Na than substrates amended with FBF or CDS. Moreover, Physocarpus plants grown in CSS were significantly larger than those plants grown in the control substrate. The results obtained in media containing FBF or CDS were similar to those obtained in the control substrate.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 658e-658
Author(s):  
Mondher Bouden ◽  
Jacques-Andre Rioux

Large spaces are required to eliminate waste by burying and this method is very costly. The horticulture use of waste seems to be one of the best optional methods of disposal. This study was performed to evaluate the effects of fresh bio-filters (FBF), composted sewage sludges (CSS), and composted de-inked sludges (CDS) on growth of three woody ornamental species (Spiraea japonica `Little Princess', Spiraea nipponica `Snowmound', and Physocarpus opulifolius `Nanus') produced in containers. Three fertilization regimes (N at 200, 400, and 600 mg·L–1 in the form of soluble fertilizer 20–20–20) were applied weekly onto containers during 3.5 months. Plants were potted in 10 substrates. The control substrate contained 4 peatmoss: 5 composted conifer bark: 1 fine crushed gravel (by volume). In the other nine substrates, peatmoss was partially substituted by one of the three organic residues (10%, 20%, or 30% of FBF, CSS, or CDS). The experimental design was a split-split-plot with four replicates and two samples by treatment. Chemical analysis of the organic residues proved that the fertilization value of CSS was greater than the other residues and heavy metals are below the undesirable limits for the three residues. The amount of available major mineral elements in these residues is too low to satisfy the mineral nutrient needs of plants. In addition, there is a linear effect of the fertilization on plant growth. The CDS required a high dose of the fertilizer (600 mg·L–1) which may be due to the immobilization of N. The 10% proportion of FBF and CDS, combined with the other materials, was the most adequate proportion and did not reduce the growth of plants (height, aerial, and root dry matter). However, CSS can be used with a high proportion (20%) especially for Spiraea japonica `Little Princess'.


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 248
Author(s):  
Tanabhat-Sakorn Sukitprapanon ◽  
Metawee Jantamenchai ◽  
Duangsamorn Tulaphitak ◽  
Nattaporn Prakongkep ◽  
Robert John Gilkes ◽  
...  

Understanding phosphorus (P) dynamics in tropical sandy soil treated with organic residues of contrasting quality is crucial for P management using organic amendments. This research determined P fractions in a tropical sandy soil under the application of organic residues of different quality, including groundnut stover (GN), tamarind leaf litter (TM), dipterocarp leaf litter (DP), and rice straw (RS). The organic residues were applied at the rate of 10 t DM ha−1 year−1. The P fractions were examined by a sequential extraction procedure. Organic residue application, regardless of residue quality, resulted in P accumulation in soils. For unamended soil, 55% of total P was mainly associated with Al (hydr)oxides. Organic residue application, regardless of residue quality, diminished the NH4F-extractable P (Al-P) fraction, but it had a nonsignificant effect on NaOH-extractable P (Fe-P). The majority of Al-P and Fe-P fractions were associated with crystalline Al and Fe (hydr)oxides. NH4Cl-extractable P (labile P), NaHCO3-extractable P (exchangeable P and mineralizable organic P), HCl-extractable P (Ca-P), and residual P fractions in soil were significantly increased as a result of the incorporation of organic residues. The application of organic residues, particularly those high in ash alkalinity, increase soil pH, labile P, and Ca-P fractions. In contrast, applications of residues high in lignin and polyphenols increase residual P fraction, which is associated with organo-mineral complexes and clay mineral kaolinite.


1980 ◽  
Vol 10 (3) ◽  
pp. 436-440 ◽  
Author(s):  
A. E. Harvey ◽  
M. J. Larsen ◽  
M. F. Jurgensen

Numbers of ectomycorrhizae were assessed 3 years after harvesting approximately 50% of the overstory in two Douglas-fir-larch stands in western Montana, one was subjected to intensive residue removal, the other broadcast burned 1 year after harvest. Numbers of active ectomycorrhizal root tips were significantly reduced in the broadcast burned stand compared to either the intensively utilized stand or to an adjacent, undisturbed stand. This indicates that on difficult-to-regenerate sites, particularly where soil organic matter is low, it may be advantageous to dispose of slash created in partial cuts by means other than burning.


Sign in / Sign up

Export Citation Format

Share Document