scholarly journals Harvesting and the Incidence of Green Mold on Texas Grapefruit

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 604e-604
Author(s):  
John E. Fucik

The harvest of Rio Red grapefruit (Citrus paradisi Macf.) was “intercepted” at three stages: 1) unpicked fruit, 2) picked and carried to pallet box trailer, and 3) picked, carried, dumped in the pallet box and transported to the packing shed. Three harvesters picked fruit from four canopy locations on two trees each. At each intercept, half the fruit was dipped into a spore solution of green mold (Penicillium digitatum) and half left nontreated as controls. Intercept 1 fruit was dipped and left unpicked on the tree. After 10 days incubation, the rate of green mold infection and its location on the fruit was determined. Tests were run in May 1995 and Feb. and Apr. 1996. The rate of infection increased with each intercept, and treated fruit had 15 times the infection rate of the controls. The highest infection rate, 1.3%, occurred in May 1995 followed by Feb. (0.8%), and April (0.5%). Most infection sites appeared above and below the fruit's equator, rather than on its top or bottom exclusively. There were no effects associated with harvesters or the location of the fruit in the canopy.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 433E-433
Author(s):  
Krista C. Shellie

Export and domestic marketing of grapefruit (Citrus paradisi Macf.) can be limited by phytosanitary barriers against fruit fly species and growth of decay organisms, especially green mold (Penicillium digitatum Sacc.), during the marketing process. The objective of this research was to identify whether the dose of high-temperature forced air that providing quarantine security against Mexican fruit fly could also beneficially control the growth of green mold during subsequent storage. `Rio Red' grapefruit were harvested four times in 1995 and nine times in 1996 and challenge-inoculated with 10 L of a 1 × 106 spores/ml spore solution (10,000 spores) of green mold before or after exposure to 46°C forced air for 300 min. Control fruit were challenge-inoculated but not exposed to the heat treatment. The growth of green mold was quantified by measuring lesion diameter after 3 days of storage at 23°C, 80% RH. Grapefruit inoculated prior to the heat treatment developed significantly smaller lesions than fruit inoculated after the heat treatment or fruit not exposed to a heat treatment. The average lesion diameter of fruit inoculated prior to the heat treatment was 2.5 and 0.9 cm, respectively, in 1995 and 1996. The average lesion diameter of fruit inoculated after the heat treatment was similar to non heat-treated, control fruit. Lesion diameter of control and post heat-challenged fruit were 6.4 and 6.1 cm in 1995 and 5.7 and 5.3 cm in 1996. Results suggest reduction in decay be attributed to alteration in the pathogenicity of green mold after exposure to the heat treatment rather than an altered resistance of the fruit to the pathogen.


2022 ◽  
Vol 22 (1) ◽  
pp. 142-150
Author(s):  
Redouan Qessaoui ◽  
Mariem Zanzan ◽  
Abdelhadi Ajerrar ◽  
Hind Lahmyed ◽  
Ahmed Boumair ◽  
...  

2006 ◽  
Vol 98 (2) ◽  
pp. 351-358 ◽  
Author(s):  
A. Ortuño ◽  
A. Báidez ◽  
P. Gómez ◽  
M.C. Arcas ◽  
I. Porras ◽  
...  

Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 765-770 ◽  
Author(s):  
Leigh S. Schmidt ◽  
Jennifer M. Ghosoph ◽  
Dennis A. Margosan ◽  
Joseph L. Smilanick

Thiabendazole (TBZ) is commonly applied to harvested citrus fruit in packinghouses to control citrus green mold, caused by Penicillium digitatum. Although TBZ is not used before harvest, another benzimidazole, thiophanate methyl, is commonly used in Florida and may be introduced soon in California to control postharvest decay of citrus fruit. Isolates from infected lemons and oranges were collected from many geographically diverse locations in California. Thirty-five isolates collected from commercial groves and residential trees were sensitive to TBZ, while 19 of 74 isolates collected from 10 packinghouses were resistant to TBZ. Random amplified polymorphic DNA analysis indicated that the isolates were genetically distinct and differed from each other. Nineteen TBZ-resistant isolates and a known TBZ-resistant isolate displayed a point mutation in the β-tubulin gene sequence corresponding to amino acid codon position 200. Thymine was replaced by adenine (TTC → TAC), which changed the phenylalanine (F) to tyrosine (Y). In contrast, for 49 TBZ-sensitive isolates that were sequenced, no mutations at this or any other codon positions were found. All of the isolates of P. digitatum resistant to TBZ collected from a geographically diverse sample of California packinghouses appeared to have the same point mutation conferring thiabendazole resistance.


2000 ◽  
Vol 90 (9) ◽  
pp. 932-943 ◽  
Author(s):  
Nicole Benhamou ◽  
Jacques Brodeur

Chronological events of the intercellular interaction between Verticillium lecanii and the postharvest pathogen Penicillium digitatum were investigated by transmission electron microscopy and gold cytochemistry. Growth inhibition of P. oligandrum as a response to V. lecanii attack correlated with striking host changes including retraction of the plasma membrane and cytoplasm disorganization. Such changes were associated with the deposition on the inner host cell surface of a chitin- and cellulose-enriched material which appeared to be laid down as a structural defense reaction. The accumulation of chitin in the newly formed material correlated with a decrease in the amount of wallbound chitin. However, the deposition of cellulose appeared to correspond to a de novo synthesis, as evidenced by the occurrence of cellulose-containing vesicles which released their content in the space between the invaginated plasma membrane and the host cell wall. Results of the present study provide the first ultrastructural and cytochemical evidence that antagonism, triggered by V. lecanii, is a multifaceted process in which antibiosis, with alteration of the host hyphae prior to contact with the antagonist, appears to be the key process in the antagonism against P. digitatum.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shuhua Lin ◽  
Yuanxiu Wang ◽  
Qunlin Lu ◽  
Bin Zhang ◽  
Xiaoyu Wu

AbstractPenicillium digitatum is the primary spoilage fungus that causes green mold during postharvest in citrus. To reduce economic losses, developing more efficient and less toxic natural antimicrobial agents is urgently required. We previously found that the X33 antimicrobial oligopeptide (X33 AMOP), produced by Streptomyces lavendulae X33, exhibited a sterilization effect on P. digitatum. In this study, the effects, and physiological mechanisms of X33 AMOP as an inhibitor of P. digitatum were investigated. The transcriptional and metabolome profiling of P. digitatum exposed to X33 AMOP revealed 3648 genes and 190 metabolites that were prominently changed. The omics analyses suggested that X33 AMOP mainly inhibited P. digitatum growth by affecting cell integrity, genetic information delivery, oxidative stress tolerance, and energy metabolism. These findings provide helpful information regarding the antimicrobial mechanism of X33 AMOP against P. digitatum at the molecular level and indicate that X33 AMOP is a potential candidate to control P. digitatum. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document