scholarly journals Combined transcriptome and metabolome analyses reveal the potential mechanism for the inhibition of Penicillium digitatum by X33 antimicrobial oligopeptide

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shuhua Lin ◽  
Yuanxiu Wang ◽  
Qunlin Lu ◽  
Bin Zhang ◽  
Xiaoyu Wu

AbstractPenicillium digitatum is the primary spoilage fungus that causes green mold during postharvest in citrus. To reduce economic losses, developing more efficient and less toxic natural antimicrobial agents is urgently required. We previously found that the X33 antimicrobial oligopeptide (X33 AMOP), produced by Streptomyces lavendulae X33, exhibited a sterilization effect on P. digitatum. In this study, the effects, and physiological mechanisms of X33 AMOP as an inhibitor of P. digitatum were investigated. The transcriptional and metabolome profiling of P. digitatum exposed to X33 AMOP revealed 3648 genes and 190 metabolites that were prominently changed. The omics analyses suggested that X33 AMOP mainly inhibited P. digitatum growth by affecting cell integrity, genetic information delivery, oxidative stress tolerance, and energy metabolism. These findings provide helpful information regarding the antimicrobial mechanism of X33 AMOP against P. digitatum at the molecular level and indicate that X33 AMOP is a potential candidate to control P. digitatum. Graphical Abstract

2020 ◽  
Vol 8 (10) ◽  
pp. 1477 ◽  
Author(s):  
Mariana Andrea Díaz ◽  
Martina María Pereyra ◽  
Fabricio Fabián Soliz Santander ◽  
María Florencia Perez ◽  
Josefina María Córdoba ◽  
...  

Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P. digitatum by C. lusitaniae 146 was evaluated; the ability of strain 146 to degrade mycotoxin patulin was tested; and the effect of the treatment on the sensory properties of fruits was determined. An efficient protection of lemons was achieved after minimum exposure to a relatively low yeast cell concentration. Apart from lemons, the yeast prevented green mold in grapefruits, mandarins, oranges, and tangerines, implying that it can be used as a broad-range biocontrol agent in citrus. The ability to degrade patulin indicated that strain 146 may be suitable for the control of further Penicillium species. Yeast treatment did not alter the sensory perception of the aroma of fruits. These results corroborate the potential of C. lusitaniae 146 for the control of postharvest diseases of citrus fruits and indicate its suitability for industrial-scale fruit processing.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ruopeng Yang ◽  
Xiu Chen ◽  
Qiang Huang ◽  
Chuying Chen ◽  
Kannan R. R. Rengasamy ◽  
...  

Penicillium digitatum is the most severe pathogen that infects citrus fruits during storage. It can cause fruit rot and bring significant economic losses. The continuous use of fungicides has resulted in the emergence of drug-resistant strains. Consequently, there is a need to develop naturally and efficiently antifungal fungicides. Natural antimicrobial agents such as clove oil, cinnamon oil, and thyme oil can be extracted from different plant parts. They exhibited broad-spectrum antimicrobial properties and have great potential in the food industry. Here, we exploit a novel cinnamaldehyde (CA), eugenol (EUG), or carvacrol (CAR) combination antifungal therapy and formulate it into nanoemulsion form to overcome lower solubility and instability of essential oil. In this study, the antifungal activity evaluation and transcriptional profile of Penicillium digitatum exposed to compound nanoemulsion were evaluated. Results showed that compound nanoemulsion had a striking inhibitory effect on P. digitatum in a dose-dependent manner. According to RNA-seq analysis, there were 2,169 differentially expressed genes (DEGs) between control and nanoemulsion-treated samples, including 1,028 downregulated and 1,141 upregulated genes. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in intracellular organelle parts of cell component: cellular respiration, proton transmembrane transport of biological process, and guanyl nucleotide-binding molecular function. KEGG analysis revealed that metabolic pathway, biosynthesis of secondary metabolites, and glyoxylate and dicarboxylate metabolism were the most highly enriched pathways for these DEGs. Taken together, we can conclude the promising antifungal activity of nanoemulsion with multiple action sites against P. digitatum. These outcomes would deepen our knowledge of the inhibitory mechanism from molecular aspects and exploit naturally, efficiently, and harmlessly antifungal agents in the citrus postharvest industry.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zengyu Gan ◽  
Jianping Huang ◽  
Jinyin Chen ◽  
Muhammad Farrukh Nisar ◽  
Wenwen Qi

Penicillium digitatum (green mold) is pathogenic fungi and causes citrus fruit postharvest rotting that leads to huge economic losses across the world. The current study was aimed to develop a new derivative of cinnamaldehyde (4-methoxycinnamaldehyde) through the cross-hydroxyaldehyde condensation method with benzaldehyde substituted by a benzene ring under the catalysis of alkaline reagent and, moreover, to test their antifungal potential against P. digitatum, the major citrus fruit rotting fungi. Multiple derivatives of cinnamaldehyde viz. 4-nitro CA, 4-chloro CA, 4-bromo CA, 4-methyl CA, 4-methoxy CA, and 2,4-dimethoxy CA were synthesized in the current study whereas the 4-methoxy CA showed highest antifungal actions for citrus fruit postharvest rotting fungi P. digitatum. Moreover, 4-methoxy CA was found to reduce the spore germination and growth by damaging the fungal cell membrane, as well as declined the levels of reducing sugars.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ze Peng ◽  
Yanhong He ◽  
Saroj Parajuli ◽  
Qian You ◽  
Weining Wang ◽  
...  

AbstractDowny mildew (DM), caused by obligate parasitic oomycetes, is a destructive disease for a wide range of crops worldwide. Recent outbreaks of impatiens downy mildew (IDM) in many countries have caused huge economic losses. A system to reveal plant–pathogen interactions in the early stage of infection and quickly assess resistance/susceptibility of plants to DM is desired. In this study, we established an early and rapid system to achieve these goals using impatiens as a model. Thirty-two cultivars of Impatiens walleriana and I. hawkeri were evaluated for their responses to IDM at cotyledon, first/second pair of true leaf, and mature plant stages. All I. walleriana cultivars were highly susceptible to IDM. While all I. hawkeri cultivars were resistant to IDM starting at the first true leaf stage, many (14/16) were susceptible to IDM at the cotyledon stage. Two cultivars showed resistance even at the cotyledon stage. Histological characterization showed that the resistance mechanism of the I. hawkeri cultivars resembles that in grapevine and type II resistance in sunflower. By integrating full-length transcriptome sequencing (Iso-Seq) and RNA-Seq, we constructed the first reference transcriptome for Impatiens comprised of 48,758 sequences with an N50 length of 2060 bp. Comparative transcriptome and qRT-PCR analyses revealed strong candidate genes for IDM resistance, including three resistance genes orthologous to the sunflower gene RGC203, a potential candidate associated with DM resistance. Our approach of integrating early disease-resistance phenotyping, histological characterization, and transcriptome analysis lay a solid foundation to improve DM resistance in impatiens and may provide a model for other crops.


2022 ◽  
Vol 22 (1) ◽  
pp. 142-150
Author(s):  
Redouan Qessaoui ◽  
Mariem Zanzan ◽  
Abdelhadi Ajerrar ◽  
Hind Lahmyed ◽  
Ahmed Boumair ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mark Fenton ◽  
Ruth Keary ◽  
Olivia McAuliffe ◽  
R. Paul Ross ◽  
Jim O'Mahony ◽  
...  

New antibacterial agents are urgently needed for the elimination of biofilm-forming bacteria that are highly resistant to traditional antimicrobial agents. Proliferation of such bacteria can lead to significant economic losses in the agri-food sector. This study demonstrates the potential of the bacteriophage-derived peptidase,CHAPK, as a biocidal agent for the rapid disruption of biofilm-forming staphylococci, commonly associated with bovine mastitis. PurifiedCHAPKapplied to biofilms ofStaphylococcus aureusDPC5246 completely eliminated the staphylococcal biofilms within 4 h. In addition,CHAPKwas able to prevent biofilm formation by this strain. TheCHAPKlysin also reducedS. aureusin a skin decolonization model. Our data demonstrates the potential ofCHAPKas a biocidal agent for prevention and treatment of biofilm-associated staphylococcal infections or as a decontaminating agent in the food and healthcare sectors.


Author(s):  
Juan Gómez-Sanchis ◽  
Emilio Soria-Olivas ◽  
Delia Lorente-Garrido ◽  
José M. Martínez-Martínez ◽  
Pablo Escandell-Montero ◽  
...  

The citrus industry is nowadays an important part of the Spanish agricultural sector. One of the main problems present in the citrus industry is decay caused by Penicillium digitatum and Penicillium italicum fungi. Early detection of decay produced by fungi in citrus is especially important for the citrus industry of distribution. This chapter presents a hyperspectral computer vision system and a set of machine learning techniques in order to detect decay caused by Penicillium digitatum and Penicillium italicum fungi that produce more economic losses to the sector. More specifically, the authors employ a hyperspectral system and artificial neural networks. Nowadays, inspection and removal of damaged citrus is done manually by workers using dangerous ultraviolet light. The proposed system constitutes a feasible and implementable solution for the citrus industry; this has been proven by the fact that several machinery enterprises have shown their interest in the implementation and patent of the system.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Khem Raj Meena ◽  
Shamsher S. Kanwar

A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of theBacillusgenus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families ofBacilluslipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable.


Sign in / Sign up

Export Citation Format

Share Document