scholarly journals Genotype of Flowering Stems of Antirrhinum majus L. Influences Ethylene Evolution and Fresh Weight Changes Postharvest

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 617d-617
Author(s):  
Dennis P. Stimart ◽  
Kenneth R. Schroeder

Cut flowers of a short (S)-lived (3-day) inbred, a long (L)-lived (15-day) inbred and their hybrid (F1, 7.3 days) of Antirrhinum majus L. were evaluated for fresh weight and ethylene evolution change postharvest when held in deionized water. Fresh weight change of all accessions increased 1 day postharvest then declined over the remainder of postharvest life. The loss of fresh weight was most rapid for S and less rapid for F1 and least rapid for L. Ethylene release postharvest for S and F1 started on day 1, but for L ethylene release started on day 9. Once ethylene evolution began it continued through postharvest life. On the last day of postharvest life, ethylene release from S and F1 were similar, but L was twice the level as S and F1. It appears that a slower decline in fresh weight, a delay in outset of ethylene release and higher final amount of ethylene release at senescence are heritable and associated with longer keeping time of A. majus.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 482G-483
Author(s):  
Dennis P. Stimart ◽  
Kenneth R. Schroeder

Cut flowers of a short(S) lived (3 days) inbred, a long(L) lived (15 days) inbred and their hybrid (F1, 7.3 days) of Antirrhinum majus L. were evaluated for water loss when held in deionized water under continuous fluorescent light at 25°C. Flowering stems for water loss evaluation were harvested when the basal five to six florets expanded. Cut stems were placed in narrowed-necked bottles with the open area between the stem and bottle sealed with Parafilm. Stem weight and water weight in the bottle were taken every 24 h. Water loss evaluation was continued until 50% of the open florets on the flowering stem wilted or turned brown. Overall, water loss from all accessions was highest 24 h postharvest, declined rapidly between 24 to 96 h, and remained unchanged throughout the remainder of postharvest life. Between 24 to 96 h, the slope of the line for water loss was greatest for L, least for S, and intermediate for the F1. It appears that longest postharvest life of A. majus is associated with the most rapid decline of water loss immediately postharvest to a level, which remains constant.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 455A-455
Author(s):  
William J. Martin ◽  
Dennis P. Stimart

Cut flowers of Antirrhinum majus L. (snapdragon) P1, P2, F1, F3, and F2 × F2 plants were harvested after the first five flowers were open and were evaluated for postharvest longevity to further evaluate genes conditioning postharvest longevity. F3 progeny evaluated were derived by selfing F2 selections of long keeping, mid-range, and short keeping types. F2 × F2 progeny evaluated were derived from crosses within and between postharvest longevity categories. Populations for evaluation were grown in the greenhouse in winter 1998-1999 in a randomized complete-block design according to standard forcing procedures. Thirty plants of each genotype were held in the laboratory in deionized water under continuous fluorescent lighting at 22 °C for postharvest assessment. The end of postharvest life was defined as 50% of the flowers drying, browning, or wilting. Data will be presented on postharvest longevity and allelic relationships within populations.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 486d-486
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Considerable variation exists in Antirrhinum majus L. (snapdragon) for postharvest longevity of cut flowering stems. We have seen a range of 2 to 16 d postharvest life of snapdragon inbreds used in our experiments when evaluated in deionized water. A correlation between longevity of intact flowers and cut flowers has been reported for roses and tulips. In an effort to test this relationship on snapdragons, plants from a short-lived (5 days) and long-lived (16 days) inbred were grown in a greenhouse at the Univ. of Wisconsin, Madison, in Spring 1997. Plants began flowering in Apr.1997. The first three florets on each plant were tagged when fully open and the date of senescence recorded for each individual floret. Results showed a significant difference in longevity of intact florets. Mean floret longevity of the short- and long-lived lines was 13 and 25 days, respectively (LSD0.05 = 1.03 days). This is an indication that selection for postharvest longevity of snapdragons may be done based on intact flower longevity.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 518A-518
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Three percent hydrogen peroxide (H2O2) was diluted with deionized water (dH2O) to 0.75%, 0.38%, 0.19%, 0.09%, or 0.05% H2O2 plus 1.5% sucrose for use in evaluation of Antirrhinum majus L. (snapdragon) cut flowers. Other vase solutions used as controls included; 300 ppm 8-hydroxyquinoline citrate (8-HQC) plus 1.5% sucrose; dH2O plus 1.5% sucrose; and dH2O. A completely random design with 7 replicationss was used. Flowering stems of three commercial inbreds and one F1 hybrid of snapdragon were cut when the first five basal florets opened. Each stem was placed in an individual glass bottle containing one of the eight different treatments. Flowering stems were discarded when 50% of the open florets wilted, turned brown, or dried. Postharvest life was determined as the number of days from stem cutting to discard. Addition of H2O2 to vase solutions at rates of 0.19 and 0.09% resulted in postharvest life not different from that obtained with 8-HQC plus sucrose. Hydrogen peroxide plus sucrose extended postharvest life of snapdragon cut flowers 6 to 8 days over dH2O and 5 to 7 days over dH2O plus 1.5% sucrose.


MRS Advances ◽  
2017 ◽  
Vol 2 (39-40) ◽  
pp. 2179-2187 ◽  
Author(s):  
Stefani Kavda ◽  
Emma Richardson ◽  
Stavroula Golfomitsou

ABSTRACT This paper discusses the use of solvent-gel systems for the cleaning of poly (methyl methacrylate) (PMMA) surfaces. Aqueous polymer gel systems have been introduced to the conservation field with a particular focus on paintings, painted surfaces of wooden artefacts and stone. However, their application on plastics is very recent. Statistically designed experiments aimed to assess the efficiency and damage potential of materials constituting selected solvent-gel cleaning systems. The effect of the free solvents (deionized water, ethanol, isopropanol and petroleum ether), the hydrogel carriers (Agar, Pemulen™ TR-2, Carbopol® EZ 2-Ethomeen® C-25 and 80% hydrolysed PVAc-borax) and their combinations after 5 and 60 minutes of application time on PMMA surfaces, were evaluated through qualitative visual microscopic observation and SEM imaging, and quantitative weight change measurements. Visual observations revealed that the action of solvents (i.e. ethanol and isopropanol) was moderated by gellation (i.e. Agar), while other gel systems (i.e. Pemulen) were unsatisfactory. Results of gravimetric studies showed that most solvent-gels resulted in inconsistencies and large weight changes.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 562B-562
Author(s):  
Dennis P. Stimart ◽  
Kenneth R. Schroeder

Efforts to improve postharvest longevity of fresh-cut flowers has only recently turned toward selection and breeding. Conventional methods to extend keeping longevity of cut flowers depend on use of chemical treatment placed in holding solutions. Postharvest longevity studies were initiated with Antirrhinum majus L. (snapdragon) to determine: if natural genetic variation existed for cut-flower longevity, the inheritance of the trait, heritability, and associated physiology. Evaluation of commercial inbreds held in deionized water revealed a range in cut-flower longevity from a couple of days to 2.5 weeks. The shortest- and longestlived inbreds were used as parents in crosses to study the aforementioned areas of interest. Information will be presented on inheritance of cut flower longevity based on populations evaluated from matings for generation means analysis and inbred backcross method. Also presented will be information on stomata, transpiration, carbohydrate, fresh-weight change, and forcing temperature relative to postharvest longevity.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 835A-835
Author(s):  
B.K. Behe ◽  
T.S. Krentz

Research shows differences among flowering species in ethylene sensitivity in response to ethylene inhibitors, including silver thiosulfate. Buddleia sp. is an arching shrub with spike-shaped inlforescences in a wide range of colors, including pink, purple, yellow, and white. The objective of this study was to determine optimal pulsing time of silver thiosulfate to maximize the postharvest life of five cultivars of Buddleia sp.: `Empire Blue', `Lochinch', `Nanho Blue', `Pink Delight', `Royal Red', and `Sungold'. Flower stems harvested at 1/3 to 2/3 development were transported to a simulated consumer environment. Stems were recut under water and pulsed for 0, 30, 60, and 120 min prior to placing them in a solution of deionized water and Floralife at 10 3 g·liter–1. No silver thiosulfate treatment was more effective than the control at extending vaselife, increasing floret development, or increasing stem fresh weight.


HortScience ◽  
1995 ◽  
Vol 30 (5) ◽  
pp. 1058-1060 ◽  
Author(s):  
Motoaki Doi ◽  
Michael S. Reid

Regardless of their maturity at harvest, the vase life of cut inflorescences of the hybrid Limonium `Fantasia' placed in deionized water was 4 to 5 days. A vase solution containing Physan (a quaternary ammonium disinfectant solution) at 200 μl·liter–1 and 20 g sucrose/liter not only prolonged the longevity of individual florets but also promoted bud opening so that the vase life of cut inflorescences extended to 17 days. Pulse treatment with 100 g sucrose/liter in combination with Physan at 200 μl·liter–1 for 12 hours partially substituted for a continuous supply of sucrose. Including 30 mg gibberellic acid/liter in the vase solution was without benefit.


2020 ◽  
Vol 26 (4) ◽  
pp. 607-613
Author(s):  
Onur Sefa Alkaç ◽  
Osman Nuri Öcalan ◽  
Mehmet Güneş

Abstract This study was carried out on the flowers of 'Le Castel' Dahlia (starflower) cultivated in Tokat Gaziosmanpaşa University Agricultural Research and Application Center in 2019. The study aimed to prolong the vase life of Dahlia flowers used as cut flowers. Deionized water (control), sucrose + deionized water, thyme oil, lavender oil, carvacrol, thymol, sodium hypochlorite, and gibberellic acid were used as vase solutions. The total vase solution uptake (g/stem), daily vase solution uptake (g/day fresh weight (FW)), proportional FW (%) and vase life (day) parameters were determined based on Dahlia flowers that harvested at different harvest stages (3, 4 and 5 layers). As a result; the most extended vase life was measured in the gibberellic acid treatment (8.22 days), the highest proportional fresh weight was measured in the carvacrol in the 6th day (139.78%), the highest daily solution uptake was measured in the thyme oil in 0-2 days (11.7 g/day FW) and the highest total solution uptake was measured in the thyme oil (27.5 g/stem). It was concluded that the vase life of earlier harvested flowers was longer than of late harvested.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 459C-459
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Flowering stems from three commercial inbreds and their F1 hybrids of Antirrhinum majus L. were cut when the first eight basal florets opened. Tops of the stems were removed above the eighth floret and florets were removed leaving two, four, six, or eight open florets on a stem. A completely random design with 10 replications was used. Flowering stems were placed in plastic storage containers 35 × 23 × 14 cm (L × W × H) with 2.5 L deionized water for postharvest evaluation. Evaluation took place under continuous cool-white fluorescent light (9 μmol·m–2·s–1) at 24°C Postharvest life was determined as the number of days from cutting to discard when 50% of the open florets on a flowering stem wilted, turned brown, or dried. Results showed postharvest life increased as the number of open florets on a stem decreased. Mean postharvest life increased as much as 4.7 days when only two florets remained on a stem. These results indicate a direct relationship between number of florets on a cut flower stem and postharvest life.


Sign in / Sign up

Export Citation Format

Share Document