Root and Stem Growth Patterns of Young `Mauritius' Lychee Trees

HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 815-818 ◽  
Author(s):  
Thomas E. Marler ◽  
Leah E. Willis

`Mauritius' lychee (Litchi chinensis Sonn.) trees were planted in root observation chambers in July 1990 to determine the pattern of root and stem extension growth during 12 months. Root and stem lengths were measured at intervals ranging from 7 to 18 days from Aug. 1990 until Aug. 1991. During each period of active canopy growth, up to six stem tips were tagged and measured. Root growth was determined by measuring tracings of the extension of each root in a visible plane of the glass wall of the observation chambers. Stem growth was cyclic, with distinct periods of rapid extension followed by periods with no extension. In contrast, root growth was fairly continuous with only three periods of no visible root extension. Mean absolute extension rates were higher for stems than for roots. There were no consistent relationships between the timing of root and stem extension growth.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 540f-540
Author(s):  
Thomas E. Marler ◽  
L.E. Willis

`Mauritius' lychee (Litchi chinensis Sonn.) trees were planted in root observation chambers in July 1990 to determine the pattern of root and shoot growth during a 12 month period. Root and shoot lengths were measured at intervals ranging from 7-18 days, from Aug. 1990 until Aug. 1991. During each period of active canopy growth, up to six shoots were tagged and measured. Root growth was determined by measuring tracings the extension of each root in a visible plane from the glass wall of the observation chambers. Shoot growth was cyclic, with distinct periods of extension followed by no extension. Alternatively, root growth was fairly continuous with only a few periods of no apparent extension. There were no consistent relationships observed between root and shoot growth patterns.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 685d-685
Author(s):  
Thomas E. Marler ◽  
Haluk M. Discekici

`Red Lady' and `Tainung #1' papaya plants were grown in nursery trays with cells 5.1 cm in diameter. After 10 weeks, mean height of the `Red Lady' plants was 10.1 cm and that of the `Tainung #1' plants was 9.3 cm. Each of five plants per cultivar was planted between two root observation windows, one at 45 cm and the other at 95 cm. Roots reached the 45-cm observation window in 30 days, when mean height of the `Red Lady' plants was 18.7 cm and that of the `Tainung #1' plants was 13.0 cm. Roots reached the 95-cm observation window in 55 days, when mean height of the `Red Lady' plants was 55.4 cm and that of the `Tainung #1' plants was 40.6 cm. Thus, root extension during these initial 55 days was 17 to 18 mm per day for both cultivars, and stem extension during this period was 8.7 mm·d–1 for `Red Lady' and 5.5 mm per day for `Tainung #1'. Root extension declined for both cultivars to ≈12 mm·d–1 by the initial bloom period, then further declined to ≈4 mm·d–1 during and after the initial fruit set stage. Stem extension increased to about 19 mm·d–1 after the plants were established and remained at this rate until well into the stage of heavy fruit set and growth, when it declined to about 8 mm·d–1. The amount of fruit set influenced root characteristics more than cultivar.


2004 ◽  
Vol 22 (4) ◽  
pp. 209-212 ◽  
Author(s):  
Gray Watson

Abstract ‘Summit’ green ash (Fraxinus pennsylvanica ‘Summit’) and ‘Green Column’ black maples (Acer nigrum ‘Green Column’) were transplanted and treated with paclobutrazol (PBZ) to study its effect on root growth after transplanting. PBZ increased root extension growth of transplanted ‘Green Column’ maples in the first year after treatment, prior to the onset of above-ground growth regulation. Root growth of transplanted ‘Summit’ ash was not affected by PBZ. Transplanting reduced extension growth of regenerated roots in the first year for ‘Green Column’ maples with no effect on root dry weight. In ‘Summit’ green ash transplanting increased root extension growth in the second year, and root dry weight in both years.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 482a-482
Author(s):  
J. Roger Harris ◽  
Nina L. Bassuk ◽  
Richard W. Zobel ◽  
Thomas H. Whitlow

Root and shoot growth periodicity were determined for Fraxinus pennsylvanica Marsh. (green ash), Quercus coccinea Muenchh.,Corylus colurna L. (Turkish hazehut) and Syriaga reticulara (Blume) Hara `Ivory Silk' (tree lilac) trees. Two methods for determining root growth periodicity using a rhizotron were evaluated. One method measured the extension rate of individual roots, and the second method measured change in root length density. A third method, using periodic counts of new roots present on minirhizotrons, was also evaluated. The root extension method showed the least variability among individual trees. Shoot growth began before or simultaneously with the beginning of root growth for all species with all root growth measurement methods. Species with similar shoot phenologies had similar root phenologies when root growth was measured by the root extension method, but not when root growth was measured by the other methods. All species had concurrent shoot and root growth, and no distinct alternating growth patterns were evident when root growth was measured with the root extension method. Alternating root and shoot growth was evident, however, when root growth was measured by the other methods.


1978 ◽  
Vol 29 (1) ◽  
pp. 31 ◽  
Author(s):  
KC Hodgkinson ◽  
HGB Becking

The effect of defoliation on the extension, longevity and branching of roots was studied with use of root observation boxes. Three perennial species commonly found in the southern portion of the Australian arid zone—wallaby grass (Danthonia caespitosa), old man saltbush (Atriplex nummularia) and bladder saltbush (A. vesicaria)&,dash;were investigated and compared with lucerne (Medicago sativa). The rate of root extension of theAtriplex spp. was about double that of M. sativa and D. caespitosa and for all species was proportionately reduced with the severity of defoliation. Root mortality increased and branching of roots decreased with increasing severity of defoliation. Time-lapse photography showed that extension of the roots of D. caespitosa began to slow down about an hour after complete defoliation whereas extension of the roots of A. nummularia and M. sativa did not begin to slow down until 12–24 hr after defoliation.


2009 ◽  
Vol 36 (11) ◽  
pp. 938 ◽  
Author(s):  
Nima Yazdanbakhsh ◽  
Joachim Fisahn

Plant organ phenotyping by non-invasive video imaging techniques provides a powerful tool to assess physiological traits and biomass production. We describe here a range of applications of a recently developed plant root monitoring platform (PlaRoM). PlaRoM consists of an imaging platform and a root extension profiling software application. This platform has been developed for multi parallel recordings of root growth phenotypes of up to 50 individual seedlings over several days, with high spatial and temporal resolution. PlaRoM can investigate root extension profiles of different genotypes in various growth conditions (e.g. light protocol, temperature, growth media). In particular, we present primary root growth kinetics that was collected over several days. Furthermore, addition of 0.01% sucrose to the growth medium provided sufficient carbohydrates to maintain reduced growth rates in extended nights. Further analysis of records obtained from the imaging platform revealed that lateral root development exhibits similar growth kinetics to the primary root, but that root hairs develop in a faster rate. The compatibility of PlaRoM with currently accessible software packages for studying root architecture will be discussed. We are aiming for a global application of our collected root images to analytical tools provided in remote locations.


2010 ◽  
Vol 36 (4) ◽  
pp. 149-159
Author(s):  
Susan Day ◽  
P. Eric Wiseman ◽  
Sarah Dickinson ◽  
J. Roger Harris

Knowledge of the extent and distribution of tree root systems is essential for managing trees in the built environment. Despite recent advances in root detection tools, published research on tree root architecture in urban settings has been limited and only partially synthesized. Root growth patterns of urban trees may differ considerably from similar species in forested or agricultural environments. This paper reviews literature documenting tree root growth in urban settings as well as literature addressing root architecture in nonurban settings that may contribute to present understanding of tree roots in built environments. Although tree species may have the genetic potential for generating deep root systems (>2 m), rooting depth in urban situations is frequently restricted by impenetrable or inhospitable soil layers or by underground infrastructure. Lateral root extent is likewise subject to restriction by dense soils under hardscape or by absence of irrigation in dry areas. By combining results of numerous studies, the authors of this paper estimated the radius of an unrestricted root system initially increases at a rate of approximately 38 to 1, compared to trunk diameter; however, this ratio likely considerably declines as trees mature. Roots are often irregularly distributed around the tree and may be influenced by cardinal direction, terrain, tree lean, or obstacles in the built environment. Buttress roots, tap roots, and other root types are also discussed.


1995 ◽  
Vol 120 (2) ◽  
pp. 211-216 ◽  
Author(s):  
J. Roger Harris ◽  
Nina L. Bassuk ◽  
Richard W. Zobel ◽  
Thomas H. Whitlow

The objectives of this study were to determine root and shoot growth periodicity for established Fraxinus pennsylvanica Marsh. (green ash), Quercus coccinea Muenchh. (scarlet oak), Corylus colurna L. (Turkish hazelnut), and Syringa reticulata (Blume) Hara `Ivory Silk' (tree lilac) trees and to evaluate three methods of root growth periodicity measurement. Two methods were evaluated using a rhizotron. One method measured the extension rate (RE) ofindividual roots, and the second method measured change in root length (RL) against an observation grid. A third method, using periodic counts of new roots present on minirhizotrons (MR), was also evaluated. RE showed the least variability among individual trees. Shoot growth began before or simultaneously with the beginning of root growth for all species with all root growth measurement methods. All species had concurrent shoot and root growth, and no distinct alternating growth patterns were evident when root growth was measured by RE. Alternating root and shoot growth was evident, however, when root growth was measured by RL and MR. RE measured extension rate of larger diameter lateral roots, RL measured increase in root length of all diameter lateral roots and MR measured new root count of all sizes of lateral and vertical roots. Root growth periodicity patterns differed with the measurement method and the types of roots measured.


2016 ◽  
Vol 28 (6) ◽  
pp. 621-631 ◽  
Author(s):  
Eric R. Schultz ◽  
Anna-Lisa Paul ◽  
Robert J. Ferl

Sign in / Sign up

Export Citation Format

Share Document