scholarly journals 405 No-till Vegetable Production in the Sand Hill Region of North Carolina

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 462E-463
Author(s):  
Greg D. Hoyt

An experiment was established to determine the effect of different winter cover crops residues on yields of no-till pumpkins, yellow summer squash, and sweet corn. Residue treatments of fallow, triticale, crimson clover, little barley, and crimson clover + little barley were fall established and killed before spring no-till planting in 1998 and 1999. All summer vegetables received recommended fertilizer rates and labeled pesticides. Spring cover crop growth and biomass measurements ranged from 1873 to 6362 kg/ha. No-till sweet corn yields among the various cover residue treatments were greater where crimson clover and crimson clover + little barley (mixture) were used as residue in 1999, but not significantly different in 1998. No-till pumpkins showed the beneficial affect cover crop residue had on vegetable yields when dry conditions exist. Triticale and crimson clover + little barley (mixture) residues reduced soil water evaporation and produced more numbers of fruit per hectare (5049 and 5214, respectively) and greater weights of fruit (20.8 and 20.9 Mg/ha) than the other residue treatments (3725 to 4221 fruit/ha and 11.8 to 16.1 Mg/ha, respectively). No-till summer squash harvest showed steady increases in yield through time by all treatments with crimson clover residue treatment with the greatest squash yields and triticale and little barley residue treatments with the lowest squash yields. We found that sweet corn and squash yields were greater where legume cover residues were used compared to grass cover residues, whereas, pumpkin yields were higher where the greatest quantity of mulch was present at harvest (grass residues).

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Ted S. Kornecki ◽  
Corey M. Kichler

In a no-till system, there are many different methods available for terminating cover crops. Mechanical termination, utilizing rolling and crimping technology, is one method that injures the plant without cutting the stems. Another popular and commercially available method is mowing, but this can cause problems with cover crop re-growth and loose residue interfering with the planter during cash crop planting. A field experiment was conducted over three growing seasons in northern Alabama to determine the effects of different cover crops and termination methods on cantaloupe yield in a no-till system. Crimson clover, cereal rye, and hairy vetch cover crops were terminated using two different roller-crimpers, including a two-stage roller-crimper for four-wheel tractors and a powered roller-crimper for a two-wheel walk-behind tractor. Cover crop termination rates were evaluated one, two, and three weeks after termination. Three weeks after rolling, a higher termination rate was found for flail mowing (92%) compared to lower termination rates for a two-stage roller (86%) and powered roller-crimper (85%), while the control termination rate was only 49%. There were no significant differences in cantaloupe yield among the rolling treatments, which averaged 38,666 kg ha−1. However, yields were higher for cereal rye and hairy vetch cover crops (41,785 kg ha−1 and 42,000 kg ha−1) compared to crimson clover (32,213 kg ha−1).


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 570c-570
Author(s):  
Owusu A. Bandele ◽  
Marion Javius ◽  
Byron Belvitt ◽  
Oscar Udoh

Fall-planted cover crops of hairy vetch (Vicia villosa Roth), Austrian winter pea (Pisum sativum subsp. arvense L. Poir), and crimson clover (Trifolium incarnatum L.) were each followed by spring-planted 'Sundance' summer squash [Cucurbita pepo var. melopepo (L.) Alef.] and 'Dasher' cucumber (Cucumis sativus L.). Squash and cucumber crops were followed by fall 'Florida Broadleaf mustard green [Brassica juncea (L.) Czerniak] and 'Vates' collard (Brassica oleracea L. Acephala group), respectively. The same vegetable sequences were also planted without benefit of cover crop. Three nitrogen (N) rates were applied to each vegetable crop. Squash following winter pea and crimson clover produced greater yields than did squash planted without preceding cover crop. Cucumber following crimson clover produced the greatest yields. No cover crop effect was noted with mustard or collard. Elimination of N fertilizer resulted in reduced yields for all crops, but yields of crops with one-half the recommended N applied were generally comparable to those receiving the full recommended rate.


HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1568-1574 ◽  
Author(s):  
E. Ryan Harrelson ◽  
Greg D. Hoyt ◽  
John L. Havlin ◽  
David W. Monks

Throughout the southeastern United States, vegetable growers have successfully cultivated pumpkins (Cucurbita pepo) using conventional tillage. No-till pumpkin production has not been pursued by many growers as a result of the lack of herbicides, no-till planting equipment, and knowledge in conservation tillage methods. All of these conservation production aids are now present for successful no-till vegetable production. The primary reasons to use no-till technologies for pumpkins include reduced erosion, improved soil moisture conservation, long-term improvement in soil chemical and microbial properties, and better fruit appearance while maintaining similar yields compared with conventionally produced pumpkins. Cover crop utilization varies in no-till production, whereas residue from different cover crops can affect yields. The objective of these experiments was to evaluate the influence of surface residue type on no-till pumpkin yield and fruit quality. Results from these experiments showed all cover crop residues produced acceptable no-till pumpkin yields and fruit size. Field location, weather conditions, soil type, and other factors probably affected pumpkin yields more than surface residue. Vegetable growers should expect to successfully grow no-till pumpkins using any of the winter cover crop residues tested over a wide range in residue biomass rates.


HortScience ◽  
1997 ◽  
Vol 32 (5) ◽  
pp. 866-870 ◽  
Author(s):  
Nancy G. Creamer ◽  
Mark A. Bennett ◽  
Benjamin R. Stinner

Planting polyculture mixtures of cover crops can optimize the benefits of their use. Thirteen polyculture mixtures of cover crops were evaluated in Columbus and Fremont, Ohio, to find a species mix that would establish quickly for erosion control, overwinter in Ohio, contribute sufficient N and have a C : N ratio between 20:1 and 30:1 to optimize N availability for subsequent crops, be killable by mechanical methods, and have high weed control potential. All of the mixtures in Columbus had achieved 30% ground cover 1 month after planting, but only four of the mixtures achieved this in Fremont due to poor conditions at planting. Above-ground biomass (AGB) accumulation in the mixtures ranged from 3631 to 13,642 kg·ha-1 in Columbus, and 449 to 12,478 kg·ha-1 in Fremont. Nitrogen in the AGB ranged from 74 to 269 kg·ha-1 in Columbus, and 10 to 170 kg·ha-1 in Fremont. Weed cover in the cover crop plots ranged from 1% to 91% eight weeks after cover crop kill in Columbus, and 12% to 90% seven weeks after cover crop kill in Fremont. Because one or more species in each screened mixture was determined not to be suitable, none of the mixtures was optimum. However, information gained about performance of individual species within the mixtures is also useful. `Nitro' alfalfa (Medicago sativa L.), ladino clover (Trifolium repense L.), subterranean clover (Trifolium subterraneum L.), Austrian winter peas [Pisum sativum ssp. Arvense (L.) Poir], and annual ryegrass (Lolium multiflorum Lam.) did not overwinter dependably in Ohio. Tall fescue (Festuca arundinacea L.), perennial ryegrass (Lolium perenne L.), and orchardgrass (Dactylis glomerata L.) did not compete well with taller, more vigorous species, and were not persistent in the mixtures. Medium and mammoth red clover (Trifolium pratense L.), annual and perennial ryegrass, and white and yellow blossom sweetclover [Melilotus alba Desr., and Melilotus officianalis (L). Desr.], were not killable by mechanical methods. Individual species that established quickly, were competitive in the mixtures, overwintered dependably, and were killed by mechanical methods were rye (Secale cereale L.), barley (Hordeum vulgare L.), crimson clover (Trifolium incarnatum L.), and hairy vetch (Vicia villosa Roth.)


Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 355-361 ◽  
Author(s):  
Nilda R. Burgos ◽  
Ronald E. Talbert

Studies were conducted at the Main Agricultural Experiment Station in Fayetteville and the Vegetable Substation in Kibler, Arkansas, in 1992 and 1993 on the same plots to evaluate weed suppression by winter cover crops alone or in combination with reduced herbicide rates in no-till sweet corn and to evaluate cover crop effects on growth and yield of sweet corn. Plots seeded to rye plus hairy vetch, rye, or wheat had at least 50% fewer early season weeds than hairy vetch alone or no cover crop. None of the cover crops reduced population of yellow nutsedge. Without herbicides, hairy vetch did not suppress weeds 8 wk after cover crop desiccation. Half rates of atrazine and metolachlor (1.1 + 1.1 kg ai ha−1) reduced total weed density more effectively in no cover crop than in hairy vetch. Half rates of atrazine and metolachlor controlled redroot pigweed, Palmer amaranth, and goosegrass regardless of cover crop. Full rates of atrazine and metolachlor (2.2 + 2.2 kg ai ha−1) were needed to control large crabgrass in hairy vetch. Control of yellow nutsedge in hairy vetch was marginal even with full herbicide rates. Yellow nutsedge population increased and control with herbicides declined the second year, particularly with half rates of atrazine and metolachlor. All cover crops except hairy vetch alone reduced emergence, height, and yield of sweet corn. Sweet corn yields from half rates of atrazine and metolachlor equalled the full rates regardless of cover crops.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2334
Author(s):  
Heather L. Tyler

Conservation management practices can improve soil health while minimizing deleterious effects of agriculture on the environment. However, adoption of these practices, particularly cover crops, is not widespread, as they often reduce crop yields compared to traditional management practices. The purpose of the current study was to determine if a two-species cover crop treatment of rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.) could increase soil health parameters and maximize soybean (Glycine max L.) yield greater than rye only in tilled and no-till Mississippi field soils. Enhanced microbial biomass and organic matter input from cover crops increased the activities of β-glucosidase, cellobiohydrolase, fluorescein diacetate hydrolysis, N-acetylglucosaminidase, and phosphatase in surface soils. Rye plus clover tended to elicit higher activities than rye only in no-till plots. Both cover crop treatments inhibited soybean yield in tilled plots by 11–25%. These results indicate that tillage exacerbates yield inhibition by cover crops in soybean and that double-species cover crop treatments were more consistent in increasing activities linked to nutrient cycling. Further study examining different combinations of cover crops in no-till systems is necessary to gain a better understanding of how they can be implemented to enhance soil health while maximizing crop yield.


1990 ◽  
Vol 4 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Randall H. White ◽  
A. Douglas Worsham

Eight herbicide treatments per crop were evaluated for hairy vetch and crimson clover cover-crop control in no-till corn and cotton at two locations in North Carolina. Paraquat alone or combined with dicamba, 2,4-D, or cyanazine, and cyanazine alone, controlled clover the best in both crops. All herbicide treatments, except glyphosate alone, controlled at least 89% of hairy vetch in corn. However, only 2,4-D and cyanazine alone or combined with glyphosate controlled greater than 89% of hairy vetch in cotton. Except for poor control of hairy vetch and crimson clover by glyphosate alone, reduced legume control did not consistently decrease corn or cotton yield. Weed control was reduced in crimson clover treated with glyphosate alone, but control was similar among the remaining herbicide treatments. Effectiveness of legume control did not influence the N concentration of corn or cotton. Corn stand, height, and yield were greater in hairy vetch than in crimson clover. Seed cotton yield did not differ between vetch and clover.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 539F-540
Author(s):  
John Luna ◽  
Mary Staben ◽  
Tim O'Brien

Five on-farm trials were conducted in the Willamette Valley of western Oregon in 1996 to evaluate the potential for integrating winter-annual cover crops and rotary strip-tillage in vegetable productions systems. Two kinds of rotary strip tillers were used to till strips into killed winter cover crops or wheat stubble. Strip-tillage systems were compared to the “standard tillage” practices of the participating growers. In two sweet corn trials, yield of sweet corn was reduced ≈1 MT/ha in the strip-tillage treatments, compared to the standard tillage practices used by the growers. In these trials, the number of tillage operations was reduced by four to five passes with the strip-tillage system. In two other sweet corn trials, corn yield was reduced by ≈4.5 to 5.6 MT/ha in the strip-till treatments compared to the standard tillage treatments. In a transplanted broccoli trial, the strip-tillage and standard tillage treatments produced comparable yields. Possible factors reducing crop yield in the strip till systems include reduced soil temperature at planting and during early growth, soil moisture depletion in the undisturbed cover crop areas, soil compaction, nitrogen immobilization by the cover crop, weed competition, and possible glyphosate/microbiological interactions. Although an economic analysis of this project has not yet been completed, a rough estimate of tillage costs at $25/40 per pass per ha suggests that, in the field with only a 1 MT/ha yield reduction, the reduction in tillage costs would offset the yield reduction in corn (valued at about $88/MT). If yield reducing factors can be understood and a predictable, manageable system of strip-till vegetable production developed, there is a potential to dramatically reduce tillage costs and enhance soil quality through conservation of soil organic matter and biological diversity.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 611e-611
Author(s):  
D.C. Sanders ◽  
G.D. Hoyt ◽  
J.C. Gilsanz ◽  
J.M. Davis ◽  
J.T. Garrett ◽  
...  

`Jewel' sweetpotato was no-till planted into crimson clover, wheat, or winter fallow. Then N was applied at 0, 60, or 120 kg·ha–1 in three equal applications to a sandy loam soil. Each fall the cover crop and production crop residue were plowed into the soil, beds were formed, and cover crops were planted. Plant growth of sweetpotato and cover crops increased with N rate. For the first 2 years crimson clover did not provide enough N (90 kg·ha–1) to compensate for the need for inorganic N. By year 3, crimson clover did provide sufficient N to produce yields sufficient to compensate for crop production and organic matter decomposition. Soil samples were taken to a depth of 1 m at the time of planting of the cover crop and production crop. Cover crops retained the N and reduced N movement into the subsoil.


2021 ◽  
pp. 1-13
Author(s):  
Emma K. Dawson ◽  
George E. Boyhan ◽  
Tim Coolong ◽  
Nicholas T. Basinger ◽  
Ryan McNeill

Along with the many known benefits of cover crops, they may be an effective ecological weed management strategy in low-input agriculture. This research aimed to determine the effect of cover crops, combined with reduced-tillage and nitrogen inputs on sweet corn (Zea mays) yield and weed communities. During the 2-year study, the impact of the cover crop on yield varied. Yield within the no-till conventional treatment plots was not significantly different from the conventional treatment [6844 and 7721 lb/acre (P = 0.592)] in year 1 but differed in year 2 (P = 0.003). Weed density and experimental area covered by weeds were not significantly different between conventional and no-till conventional treatments. Multivariate analyses showed associations between specific weed species and management practices. Weeds were greatest in no-till organic treatments, and they had significantly lower yields, suggesting additional weed control beyond cover crops may be necessary for organic vegetable systems under reduced tillage.


Sign in / Sign up

Export Citation Format

Share Document