scholarly journals 015 Evaluation of Fungicides for Use with TOM-CAST on Fresh-market Tomatoes in Northern New Jersey

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 443C-443
Author(s):  
M.H. Maletta ◽  
W.P. Cowgill ◽  
S.A. Johnston

A research trial evaluation of fungicides and fungicide combinations in conjunction with weekly or TOM-CAST (an early blight forecast system) spray schedules was conducted in 1998. Fungicide regimens were: Quadris (alternating with Bravo Weatherstik); Bravo Weatherstik; Manzate followed by Bravo Weatherstik; Champ; Champ and Bravo; Nu-Cop; NuCop and Bravo The weekly schedule resulted in 15 fungicide applications; the TOM-CAST schedule required five applications. Foliar disease was rated weekly. Mature fruit were harvested weekly to obtain total and marketable yields. All fungicide treatments reduced foliar disease compared to the untreated control. Quadris alternating with Bravo Weatherstik on a weekly or TOM-CAST schedule provided better disease control than any other material on either schedule. There were no significant differences in disease control among the other materials applied weekly. Disease control achieved with the TOM-CAST schedule was somewhat less than with the weekly schedule for all materials. Quadris/Bravo or Bravo provided the best control and Champ or Nu-Cop alone provided the least control on the TOM-CAST schedule. Total yield was not affected by fungicide or schedule. Marketable yield was reduced by weekly applications of copper fungicides compared to most other treatments. Chemical names used: tetrachloroisophtalonitrile (chlorothalonil); [methyl (E)-2-{2-[6-(2-cyanophenoxy) pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate (asoxystrobin); copper hydroxide; manganese ethylene bisdithiocarbamate and zinc.

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 676c-676
Author(s):  
M.H. Maletta ◽  
W.P. Cowgill ◽  
W. Tietjen ◽  
S.A. Johnston ◽  
P. Nitzsche

Fourteen different fungicide schedules for early blight control, including eight variations of TOM-CAST, were evaluated at the Snyder Research and Extension Farm, Pittstown, N.J. Weather data was collected with Sensor Instruments Field Monitors. All calendar-based schedules—weekly, biweekly, grower simulation—reduced foliar disease compared to the untreated control. All forecast generated schedules—TOM-CAST variations, FAST and CUFAST—reduced foliar disease compared to the untreated control. Several of the forecast schedules resulted in disease ratings not significantly different from those following calendar based schedules or from each other. The fourteen different schedules required as many as sixteen to as few as four fungicide applications. Disease control schedule did not affect total yield, marketable yield and postharvest losses. Disease control with a TOM-CAST generated schedule based on weather data from an electronic meteorological service was not different from disease control obtained with a TOM-CAST schedule based on ground station weather data. Potential cost savings of as much as $295 per acre resulting from reduced fungicide schedules were estimated. Chemical name used: tetrachloroisophtalonitrile (chlorothalonil).


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 882C-882
Author(s):  
M.H. Maletta ◽  
W.P. Cowgill ◽  
W. Tietjen ◽  
P. Nitzsche ◽  
S.A. Johnston

The number of fungicide applications for tomato early blight control required by three disease forecasting systems—FAST, Pennsylvania State Univ., CUFAST, Cornell Univ., and TOMCAST, Ridgetown College, Ont.—was less than the number required following a weekly schedule. Foliar disease was significantly lower for all schedules compared to the untreated control. Cultural treatment had no significant effect on disease control, but disease incidence was significantly lower for stake culture than ground culture treatments. Total yield was not affected by cultural treatment, was significantly increased by a weekly fungicide application schedule, and was not appreciably different among the forecast fungicide application schedules. Marketable yield was significantly higher for stake culture than ground culture treatments and was significantly increased by all fungicide application schedules compared to the untreated control. Marketable yield was significantly lower for certain forecast schedules compared to the weekly schedule. Potential cost savings of $379 per acre and pesticide reductions of 33 lbs a.i. per acre for the season were calculated. Chemical name used: tetrachloroisophtalonitrile (chlorothalonil).


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 955-959 ◽  
Author(s):  
Douglas J. Mills ◽  
C. Benjamin Coffman ◽  
John R. Teasdale ◽  
Kathryne L. Everts ◽  
Aref A. Abdul-Baki ◽  
...  

A 3-year field study in central Maryland evaluated foliar disease in fresh-market tomato grown using combinations of four bed strategies and three fungicide programs. Bed strategies included uncovered beds with or without a composted dairy manure amendment or beds covered with black polyethylene or hairy vetch mulch. Fungicide programs included no fungicide, weekly fungicide, or fungicide applications scheduled according to the TOMCAST disease predictor. In plots with hairy vetch-covered beds, early blight caused by Alternaria solani, Septoria leaf spot caused by Septoria lycopersici, and defoliation were lower versus uncovered beds each year. Early blight and defoliation were lower in beds covered with vetch versus polyethylene mulch in 2 of 3 years. Disease severity, defoliation, and marketable yield were similar for the weekly and TOMCAST fungicide programs, with 40 to 50% fewer sprays using TOMCAST. Marketable yield was similar among bed strategies except for higher yields in covered versus uncovered and unamended beds in a relatively wet year and lower yields in vetch versus polyethylene beds in a dry year.


2001 ◽  
Vol 11 (2) ◽  
pp. 230-233
Author(s):  
William H. Tietjen ◽  
Winfred P. Cowgill ◽  
Martha H. Maletta ◽  
Peter J. Nitzsche ◽  
Stephen A. Johnston

The effect of disease forecasting systems and stake or ground culture on foliar and postharvest disease control for tomato (Lycopersicon esculentum) was evaluated during two growing seasons in northern New Jersey. Foliar disease was reduced and marketable yield increased by stake culture. Percent of postharvest losses, including loss due to anthracnose, was significantly reduced by stake culture. Effectiveness of disease control schedules, weekly or forecaster-generated, was not affected by cultural system. Disease forecasting was shown to have potential for optimizing fungicide use in tomato production by controlling foliar disease and fruit anthracnose with fewer applications than a weekly schedule.


HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 85-93 ◽  
Author(s):  
W.P. Cowgill ◽  
M.H. Maletta ◽  
T. Manning ◽  
W.H. Tietjen ◽  
S.A. Johnston ◽  
...  

Research trials, conducted from 1991 to 1998, evaluated early blight forecasting systems for use in fresh-market tomato (Lycopersicon esculentum) production in northern New Jersey. Initial trials focused on determining which of three forecast systems—NJ-FAST, CU-FAST, TOM-CAST—would optimize fungicide use. The TOM-CAST system generated fungicide application schedules that reduced foliar disease rating compared to the untreated check and, in 1 year, controlled diseases as well as a weekly schedule with 3 rather than 14 applications. TOM-CAST was easier to use than NJ-FAST or CU-FAST because it required fewer weather data inputs and simpler forecast calculations. Subsequent trials evaluated and defined thresholds for using TOM-CAST in northern New Jersey and evaluated the efficacy of several fungicides with TOM-CAST. Of the six TOM-CAST modifications evaluated, TOM-CAST beginning fungicide applications at 25 cumulative dew severity values (dew SV) and reapplying fungicide at 15 or 25 cumulative dew SV reduced disease rating as much as a weekly schedule in 1995 and 1996 and with fewer applications. After 5 years of trials, decision thresholds for using TOM-CAST in northern New Jersey were chosen and this new version of the forecast system designated NJ-TOM-CAST. It was verified in 1997 and 1998 and shown to generate fungicide application schedules that reduced foliar disease rating compared to the untreated check in both years and as much as the weekly schedule in one year. From 1995 through 1998, the conservative TOM-CAST schedules, TOM-CAST 25-15 or NJ-TOM-CAST, required on average 6 fungicide applications per year compared to weekly schedules that required on average 15 applications per year. In 1996, marketable yield was increased with TOM-CAST scheduled treatment compared to the untreated check and was the same as or greater than yield with weekly treatment. In the other 3 years, fungicide applications, whether applied on a calendar-based or TOM-CAST-based schedule, did not increase marketable yields compared to the untreated check. Fungicides shown to be effective when used with NJ-TOM-CAST schedules included both low cost and new chemistry materials. Copper fungicides, some of which are allowed in organic crop production, did not consistently control fungal diseases when applied on the NJ-TOM-CAST schedule. Applying fungicides on the NJ-TOM-CAST schedule instead of calendar-based schedules did not increase bacterial disease severity. Powdery mildew damage was more severe with NJ-TOM-CAST-scheduled applications than weekly applications in 1 year, affirming the importance of disease monitoring in the field when using NJ-TOM-CAST. By 2000, through a cooperative effort of Rutgers Cooperative Extension and SkyBit, Inc. (Boalsburg, Pa.), a commercial weather service, NJ-TOM-CAST was available to northern New Jersey tomato growers by subscription.


2006 ◽  
Vol 16 (2) ◽  
pp. 247-252 ◽  
Author(s):  
H.G. Taber

Tomato (Lycopersicon esculentum) response to potassium (K) fertilization on a well-drained, central Iowa loam soil testing low in exchangeable K was evaluated over a 3-year period. Each year the experimental design was a factorial, split-plot randomized complete block with K rate as the whole unit (0 to 332 lb/acre). The subunit was cultivar, either `Mountain Spring' (determinate growth habit) or `Jet Star' (indeterminate growth habit). Fruit harvest began the first week of August and continued weekly for 5 to 8 weeks. For all years there was a significant K rate and cultivar effect for all parameters, but no interaction except for marketable fruit size and unmarketable fruit produced. Increasing the K rate to 103 lb/acre increased fruit size of both cultivars to a maximum of 8.9 oz, but year accounted for greater fruit size difference than the choice of cultivar. Maximum marketable yield for both cultivars occurred at 220 lb/acre K with `Jet Star' producing 13% more fruit than `Mountain Spring', 359 vs. 319 cwt/acre, respectively. Cullage was high, mostly as a result of blotchy ripening disorders, with `Jet Star' consistently producing more culls than `Mountain Spring'. Increasing K rate did not reduce the percentage of culls, which remained constant at about 29% of total yield. Whole-leaf K and leaf petiole sap K levels linearly increased with additional K rate for the two sample periods at flowering and mid-harvest. The whole-leaf K sufficiency level for both cultivars at the flowering stage of growth was determined to be 3.15% and dropped to 1.30% K by mid-harvest. Critical petiole leaf sap K values (using a dilution of 1:1 sap to water) could not be determined at flowering, but at mid-harvest the critical value was about 2200 to 2800 ppm K.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 859E-860
Author(s):  
Glenn Takai* ◽  
Mari Marutani

Hot peppers (Capsicum sp.) were introduced to Guam and other Mariana Islands and became a “necessary” ingredient of local cuisine. Seven hot pepper accessions, including four local cultivars, were grown in calcareous soils on Guam and evaluated for total yield, marketable yield, the number of fruit, and weight of fruit. `Hot Beauty', a Taiwan cultivar, produced the highest total and marketable yields. `Group Zest', another Taiwan cultivar, was the earliest maturing cultivar and produced the largest fruits. `Guafi', a local cultivar, was the latest maturing cultivar. Consumer preference for hot pepper is being studied as fresh market and as processed hot sauce.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 469E-469
Author(s):  
M.H. Maletta ◽  
W.P. Cowgill ◽  
W. Tietjen ◽  
S.A. Johnston ◽  
T. Manning ◽  
...  

Five variations of TOM-CAST and two sources of weather data were used to schedule tomato early blight control for research trials at the Snyder Research and Extension Farm, Pittstown, N.J. TOM-CAST scheduled fungicide applications were initiated at 15, 25, or 35 disease severity values (DSV) and resprayed at 15 or 25 DSV. Weather data for generating the DSVs was obtained on-site with a Sensor Instruments Field Monitor™ or through subscription to the electronic meteorological service SkyBit, Inc. Bravo 720, 3 pints/acre, was used for disease control. Foliar disease, yields, and postharvest decays were evaluated. Daily DSVs, cumulative DSVs, and forecast spray schedule varied with weather data source. Because SkyBit data generated more DSVs during the season than Field Monitor data, the SkyBit-based forecasts called for one or two more sprays than the Field Monitor-based forecasts. However, the number of sprays actually applied was the same, one more or one less for each combination of initiation and respray thresholds. All treatment schedules reduced disease compared to the untreated control. Variation in initiation threshold did not affect disease control. All TOM-CAST schedules respraying at 15 to 20 DSV were as effective as the weekly schedule. All fungicide treatments increased total yields and reduced postharvest decays compared to the untreated control. Most treatments also increased marketable yields. The most efficient, effective Field Monitor-generated TOM-CAST schedule required nine sprays compared to 13 weekly sprays. The comparable SkyBit-generated schedule called for 10 applications. Chemical name used: tetrachloroisophtalonitrile (chlorothalonil).


2009 ◽  
Vol 19 (4) ◽  
pp. 792-795 ◽  
Author(s):  
Daniel L. Schellenberg ◽  
Anthony D. Bratsch ◽  
Zhengxing Shen

An open-market window has been identified in Virginia for fall broccoli (Brassica oleracea var. italica). Vegetable producers using plasticulture systems can capitalize on this opportunity by growing broccoli as a second crop after summer vegetables. The objective of this project was to evaluate suitability of two broccoli cultivars, Everest and Gypsy, for the fall production of large single-heads (>6 inches in diameter) for the fresh market. Planting density and rate of nitrogen (N) fertilizer (25, 60, and 100 lb/acre N) effects on yield characteristics were evaluated in a plasticulture system during a 3-year study (2003–05) conducted with broccoli transplants at the Virginia Polytechnic Institute and State University Kentland Agricultural Research Farm near Blacksburg, VA. The percentage of large heads was cultivar, plant density, and N rate dependent. The midseason ‘Gypsy’ produced significantly higher total yield and head weight compared with the early-season ‘Everest’. The optimum density to maximize floret production per area was 12,500 plants/acre and a supplemental N rate of 100 lb/acre. This N rate significantly (P < 0.002) improved marketable yield, large head yield, and leaf N accumulation compared with the lower rates. The data indicate that the feasibility of growing fall broccoli using a plasticulture system depends on the number of large heads produced for the fresh market. This in turn will depend on the choice of cultivar, stand establishment, and the requirement for supplemental N fertilizer over the residual level available in the soil after the first crop.


2020 ◽  
Vol 30 (4) ◽  
pp. 492-503
Author(s):  
Craig J. Frey ◽  
Xin Zhao ◽  
Jeffrey K. Brecht ◽  
Dustin M. Huff ◽  
Zachary E. Black

Although grower interest in high tunnel tomato (Solanum lycopersicum) production has increased in recent years, systematic high tunnel research conducted in humid, subtropical regions has been limited. The potential of tomato grafting to mitigate biotic and abiotic stresses makes it complementary to high-value production systems in high tunnels. In this 2-year study, grafted vs. nongrafted organic tomato production in high tunnels and open fields was investigated to determine possible synergistic effects of these two technologies. In 2016, high tunnels resulted in a significant increase of total and marketable yields, by 43% and 87%, respectively, over open field production. Grafting also significantly increased total and marketable yields over nongrafted plants by 34% and 42%, respectively. Cultivar effects demonstrated greater benefits with the implementation of high tunnel and grafting technologies for ‘Tribute’ (a beefsteak-type tomato) than for ‘Garden Gem’ (a plum-type tomato), as the increase in marketable yield was 33% greater for ‘Tribute’ in high tunnels and 45% greater for ‘Tribute’ with grafting. In 2017, a delayed effective transplanting date and the lack of high tunnel summer season extension produced results that were generally cultivar specific. While grafting increased the total yield of both cultivars (by 18%), marketable yield was increased by grafting only for ‘Tribute’ in high tunnels (by 42%). Additionally, high tunnels improved marketable yield of ‘Tribute’ by 129% but had no effect on ‘Garden Gem’. This demonstrated the consistent trend of the beefsteak-type tomato benefiting more from the combination of high tunnel and grafting technologies than the plum-type tomato. High tunnels reduced fruit decay and cracking by up to 71% compared with open field production. Stink bug (Pentatomidae) damage had the greatest impact on marketable yields each season, reaching 13% and 34% of total yields in 2016 and 2017, respectively, and was unaffected by high tunnel production or grafting. This study revealed the benefits of integrating high tunnel and grafting technologies for enhancing organic production of fresh-market tomato in the humid subtropics, and demonstrated more research is warranted to establish regional planting dates and further optimize this high-value cropping system.


Sign in / Sign up

Export Citation Format

Share Document