scholarly journals 470 Ethylene Inhibits the Development of Chilling Injury in Fresh-cut Tomato Slices during Storage at Low Temperature

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 525E-526
Author(s):  
Ji Heun Hong ◽  
Ken Gross

Experiments were conducted to determine if ethylene influences chilling injury, as measured by percent of slices showing some water-soaked areas and associated fungal growth in fresh-cut tomato slices (Lycopersicon esculentum Mill.; cvs. Mountain Pride and Sunbeam). Ethylene concentration in containers without a perforation (perforations were made by piercing the lid of the container forming a 0.7-mm hole) significantly increased during storage at 5 °C, while little or no accumulation of ethylene occurred in containers with from one to six perforations. Chilling injury was greatest in slices in containers with six perforations, compared to slices in containers with one perforation an,d was over 12-fold greater than that of slices in control containers with no perforations. The percent ofage visible fungal growth of slices was roughly correlated with the degree of chilling injury. An experiment was also performed to investigate the effectiveness of including an ethylene absorbent pad in containers on subsequent ethylene accumulation and chilling injury. While ethylene in the no-pad control increased continually during storage at 5 °C under modified-atmosphere conditions, no increase in accumulation of ethylene was observed in containers containing ethylene absorbent pads throughout storage with `Sunbeam' and `Mountain Pride' tomatoes. The ethylene absorbent pad treatment resulted in a significantly higher percent of chilling injury and visible fungal growth compared with the no-pad control. In studies aimed at inhibiting ethylene production using 1-aminoethoxyvinylglycine (AVG) during storage of slices, the concentration of ethylene in control containers (no AVG) remained at elevated levels throughout storage compared to containers with slices treated with AVG. Chilling injury in controls was 5-fold greater than that in slices treated with AVG. All slices treated with AVG had visible fungal growth, while the percent of slices showing visible fungal growth in no-AVG controls was 54%. Furthermore, we tested the effect of ethylene pretreatment of slices on subsequent slice shelf-life and quality. In slices treated with ethylene (0, 0.1, 1, and 10 μL·L-1) immediately after slicing, ethylene production in untreated controls was greater than that of all other ethylene pretreatments. However, pretreatment of slices at 3 days after slicing resulted in a different pattern of subsequent ethylene production during storage. The rate of ethylene production by slices treated with 1 μL·L-1 ethylene at 3 days after slicing was greater during storage than any of the other ethylene treatments. With slices pretreated with ethylene both immediately and 3 days after slicing, the rate of ethylene production tended to show an negative correlation with chilling injury.

2000 ◽  
Vol 125 (6) ◽  
pp. 736-741 ◽  
Author(s):  
Ji Heun Hong ◽  
Kenneth C. Gross

Experiments were conducted to determine if ethylene influences chilling injury, as measured by percentage of slices exhibiting water-soaked areas in fresh-cut tomato slices of `Mountain Pride' and `Sunbeam' tomato (Lycopersicon esculentum Mill.). Ethylene concentration in containers without ventilation significantly increased during storage at 5 °C, whereas little or no accumulation of ethylene occurred in containers with one or six perforations. Chilling injury was greatest for slices in containers with six perforations, compared to slices in containers with one perforation, and was over 13-fold greater than that of slices in control containers with no perforations. An experiment was also performed to investigate the effectiveness of including an ethylene absorbent pad in containers on subsequent ethylene accumulation and chilling injury. While ethylene in the no-pad controls increased continually during storage of both `Mountain Pride' and `Sunbeam' tomatoes at 5 °C under modified atmosphere conditions, no increase in accumulation of ethylene was observed in containers containing ethylene absorbent pads throughout storage. The ethylene absorbent pad treatment resulted in a significantly higher percentage of chilling injury compared with the no-pad control. In studies aimed at inhibiting ethylene production using AVG during storage of slices, the concentration of ethylene in control containers (no AVG) remained at elevated levels throughout storage, compared to containers with slices treated with AVG. Chilling injury in slices treated with AVG was 5-fold greater than that of controls. Further, we tested the effect of ethylene pretreatment of slices on subsequent slice shelf life and quality. In slices treated with ethylene (0, 0.1, 1, or 10 μL·L-1) immediately after slicing, ethylene production in nontreated controls was greater than that of all other ethylene pretreatments. However, pretreatment of slices 3 days after slicing resulted in a different pattern of ethylene production during storage. The rate of ethylene production by slices treated with 1 μL·L-1 ethylene 3 days after slicing was greater during storage than any of the other ethylene treatments. With slices pretreated with ethylene, both immediately and 3 days after slicing, the rate of ethylene production tended to show a negative correlation with chilling injury. Chemical name used: 1-aminoethoxyvinylglycine (AVG).


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 506A-506
Author(s):  
Ji Heun Hong ◽  
Ken Gross

Fresh-cut produce continues to be a rapidly growing industry. However, there is little information available on storage conditions for many commodities, particularly for fresh-cut tomato slices. A major problem with fresh-cut tomato slices is their short shelf-life. The best method to extend shelf-life is refrigerated storage, preferably around 4 to 5 °C. Unfortunately, tomato tissue is susceptible to chilling injury at such temperatures. Experiments were conducted to compare changes in quality of slices from red tomato (Lycopersicon esculentum Mill.) fruit during storage at 5 or 10 °C under various modified-atmosphere conditions. In this study, we used the fourth uniform slice from the stem end and analyzed for various quality attributes during the storage period. At both 5 and 10 °C storage temperatures, ethylene concentration in containers sealed with Film A (oxygen transmission rate of 60.3 or 77.9 ml per hour per m2 at 1 atm and 99% relative humidity at 5 or 10 °C, respectively) was higher than that sealed with Film B (oxygen transmission rate of 87.4 or 119.4 ml per hour per m2 at 1 atm and 99% relative humidity at 5 or 10 °C, respectively), during storage. In addition, chilling injury, as measured by percent of slices showing some water soaked-areas, in containers sealed with Film B was higher than that of slices in containers sealed with Film A. The percent of visible fungal growth of slices was roughly correlated with the degree of chilling injury, as measured by the percent of slices showing some water soaked-areas. After 13 days of storage at 5 °C, slices stored in containers with a beginning atmospheric composition of 12% CO2 /1% O2 were firmer, compared to slices given the other treatments. After 9 days of storage at 10 °C, no visible fungal growth was observed on slices in containers with a beginning atmospheric composition of 12% CO2/1% O2 or 12% CO2/20% O2. However, slices in containers with a beginning atmospheric composition of air, or 4% CO2/1 or 20% O2 and 8% CO2/1 or 20% O2 did show visible signs of fungal growth at 25%, 33%, 46%, 29%, and 100% of infected slices, respectively. Slices in containers given all treatments, with the exception of 12% CO2/1% O2, had visible fungal growth after 15 days of storage at 5 °C. Slices in containers containing eight slices had less chilling injury and visible fungal growth than those containing four slices. Chilling injury of slices stored in completely enclosed plastic containers, similar to those commonly observed in grocery food stores, was over 7-fold higher than chilling injury observed in slices containers covered with Film A after 12 days of storage at 5 °C. However, there were no significant differences in the amounts of the volatiles we measured, i.e., ethanol, ethyl acetate, hexanol and hexanal, between the two container types. These results suggested that modified-atmosphere packaging storage can extend shelflife, as well as inhibit chilling injury in fresh-cut tomato slices.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1359-1362 ◽  
Author(s):  
Jiwon Jeong ◽  
Jeffrey K. Brecht ◽  
Donald J. Huber ◽  
Steven A. Sargent

A study was conducted to determine the effect of 1-methylcyclopropene (1-MCP) on textural changes in fresh-cut tomato (Lycopersicon esculentum, Mill.) slices during storage at 5 °C. The relationship between fruit developmental stage and tissue watersoaking development was also determined. Fresh-cut tomato slices prepared from light-red fruit that had been exposed to 1-MCP (1 μL·L-1 for 24 h at 5 °C) retained significantly higher pericarp firmness during storage at 5 °C for 10 d than slices from nontreated fruit or slices stored at 10 or 15 °C and they also had a significantly higher ethylene production maximum. 1-MCP (1 or 10 μL·L-1 for 24 h at 5 °C) had no affect on the firmness of fresh-cut, red tomato slices at 5 °C or on slices prepared from 5 °C-stored, intact red tomatoes. Nor did 1-MCP treatment have a significant effect on electrolyte leakage of tomato slices or intact fruit stored at 5 °C. Slices from fruit of the same developmental stage but with higher initial firmness values had less watersoaking development and responded better to 1-MCP treatment during 8 d storage at 5 °C. 1-MCP (1 μL·L-1) was more effective in reducing watersoaking in light red stage tomato slices when applied at 5 °C for 24 h compared with 1-MCP applied at 10 or 15 °C. Watersoaking development was also more rapid in fresh-cut tomato slices as initial fruit ripeness advanced from breaker to red stage. Our results suggest that watersoaking development in fresh-cut tomato slices is an ethylene-mediated symptom of senescence and not a symptom of chilling injury as had previously been proposed.


2014 ◽  
Vol 941-944 ◽  
pp. 1188-1191
Author(s):  
Qi Li ◽  
Chuan Zhu Leng ◽  
Si Xin Wang ◽  
Xi Hong Li ◽  
Lan Chen ◽  
...  

Taking ‘Fuji’ fresh-cut apples as material, studied on the effect of different temperatures (-2 ̊C,0 ̊C,2 ̊C and 4 ̊C) on storage quality of fresh-cut apples during 25 days. The results indicated that low temperature can significantly keep the storage quality of fresh-cut apples and inhibit browning. Moreover, compared to the other treatment groups, treatment at 0 ̊C better maintained the firmness, color, as well as higher contents of titratable acid and lower MDA content, which showed 0 ̊C can extent storage time.


2008 ◽  
Vol 14 (4) ◽  
pp. 354 ◽  
Author(s):  
J. MARTÍNEZ ◽  
A. CHIESTA ◽  
F. TOVAR

For designing optimal polymeric films for modified atmosphere packaging of whole heads as well as for minimally fresh processed (fresh-cut) Iceberg lettuce ‘Coolguard’, the effect of several cutting grades on respiration rate (RR) and ethylene production at 5ºC was studied. According to common industrial practices cutting grades less than 0.5 cm, between 0.5 and 1 cm, and 2 cm length were selected. Results from four experiments were compared to those obtained for whole heads in which a homogenous range of 6 to 8 ml CO2 kg-1 h-1 in RR was found. Compared to whole heads, in fresh-cut lettuce the RR was 2-fold higher. The lowest cutting grade showed the highest respiration rate, and no significant differences in RR among lettuce pieces of intermediate and the highest grades were found. No ethylene production was detected in whole heads, while in minimally processed lettuce pieces only traces were found. For avoiding risks of anaerobic respiration and excessive CO2 levels within packages containing fresh-cut lettuce pieces lower than 0.5 cm length, films with relatively high O2 permeability like standard polypropylene or low-density polyethylene must be selected.;


HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 252c-252
Author(s):  
Han-Ling Yu ◽  
Claude Willemot ◽  
Serge Yelle ◽  
Yves Castonguay ◽  
Paul Nadeau

Translatable mRNAs from two tomato (Lycopersicon esculentum Mill.) cultivars differing in chilling tolerance were compared after 16 days of chilling at 4C and after return to 20C for 1 and 5 days. Before chilling, the translation products, resolved by 2D NEPHGE, showed significant differences between more tolerant `New York 280' (NY) and less tolerant `Early Cherry' (EC). In NY, chilling reduced the level of five to 10 mRNAs and enhanced or induced that of several other mRNAs. After transfer to 20C, the trend was progressively reversed. Changes in the levels of two low-molecular-weight basic peptides were most noticeable. One, absent in NY before chilling, was strongly expressed after chilling and 24 h after transfer to 20C, but disappeared 5 days after transfer. The level of this peptide increased slightly in EC at low temperature and was maintained after transfer to 20C. The level of the other, high in NY before chilling, was sharply reduced after chilling. In contrast, the level of this polypeptide was low in EC under all treatments.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 457b-457 ◽  
Author(s):  
Arunya Limbanyen ◽  
Jeffrey K. Brecht ◽  
Steven A. Sargent ◽  
Jerry A. Bartz

Preparation and handling procedures for fresh-cut mango slices were developed using `Tommy Atkins', `Haden', and `Palmer' mangoes. Fruit with yellow flesh color (no green color remaining) were optimum maturity for fresh-cut in terms of maintenance of acceptable appearance, texture, and taste; riper fruit developed flesh breakdown and more browning. Postharvest life of fresh-cut mango at 5 °C was 8 to 10 d with no evidence of chilling injury and was limited by flesh browning and loss of firmness. Respiration rates ranged from 32 to 40 mg CO2/kg per hr and ethylene production was typically ≤0.1 μl·kg–1·hr–1. The SSC changed little during storage, while pH varied from 3.5 to 4.8 and TA typically declined by 30% to 40%. Peeling to a depth of at least 2 mm and trimming flesh near the stem scar was necessary to minimize browning. Imported fruit that had been heat-treated for insect quarantine showed more severe browning than Florida fruit that had not been heat-treated. Preparation in aseptic conditions and dipping fruit in a 100 ppm NaOCl solution at pH 7 before and after peeling protected against decay during storage but dipping in chlorine after slicing without removal of excess liquid resulted in flesh translucency and breakdown. Dipping in 1% CaCl2 solution had no effect on flesh firmness (Instron) or browning. Storage in an unvented plastic clamshell container, which developed an atmosphere of 2.25% CO2 plus 19% O2, did not improve shelf life, but a MA of 10% CO2 plus 10% O2 was subjectively judged to slow browning and softening and resulted in no off flavor compared to air storage.


Sign in / Sign up

Export Citation Format

Share Document