scholarly journals A Highly Efficient In Vitro Cranberry Regeneration System Using Leaf Explants

HortScience ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 948-952 ◽  
Author(s):  
Luping Qu ◽  
James Polashock ◽  
Nicholi Vorsa

A very efficient adventitious regeneration (shoot organogenesis) system for cranberry (Vaccinium macrocarpon Ait.) leaves was developed. A basal medium consisting of Anderson's rhododendron salts and Murashige and Skoog's (MS) organics, supplemented with 10.0 μm thidiazuron (TDZ) and 5.0 μm 2ip, was effective for adventitious regeneration from leaves for the five cranberry cultivars tested: `Early Black', `Pilgrim', `Stevens', `Ben Lear', and `No. 35'. Parameters examined included: 1) varying combinations of three plant growth regulators (TDZ, 2ip, and NAA); 2) explant orientation (adaxial vs. abaxial side in contact with the medium); and 3) leaf position relative to the apical meristem from the source plant. Cultivars varied in regeneration frequency, but cultivar × growth regulator interaction was nonsignificant. With optimal treatment conditions, regeneration occurred on more than 95% of the explants, with `Early Black' and `Pilgrim' producing as many as 100 shoot meristems per explant. At all concentrations tested, NAA (as low as 0.1 μm) increased callus formation and significantly reduced regeneration. Emerging adventitious shoots were always observed on the adaxial side of the leaves regardless of explant orientation on the medium. Regeneration was much greater when the abaxial side was in contact with the medium, and was not related to leaf position on the source plants. Elongation of adventitious shoots began ≈2 weeks after transfer to the basal medium without growth regulators. Cuttings of elongated shoots rooted 100% both in vitro in the basal medium and ex vitro in shredded sphagnum moss. The high regeneration efficiency achieved by using this system will be very useful in the application of techniques, such as Agrobacterium- and particle bombardment-mediated transformation. Chemical names used: 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron, TDZ); N6-(γ-γ-dimethyallylamino) purine (2ip); α-naphthaleneacetic acid (NAA).

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 536D-536
Author(s):  
Luping Qu ◽  
James Polashock ◽  
Nicholi Vorsa

We have established a very efficient cranberry regeneration (shoot organogenesis) system from leaf explants using a basal medium consisting of Anderson's salts and Murashige and Skoog (MS) organics supplemented with 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (TDZ) and N6-(-??-dimethyallylamino) purine) (2ip). Characteristics examined include combinations of varying levels of three plant growth regulators (TDZ, 2ip, and naphthaleneacetic acid (NAA), explant orientation (adaxial or abaxial side in contact with the media), and leaf position relative to the distal end of the shoot. Genotypes (`Early Black', `Pilgrim', `Stevens', `Ben Lear', and US#35) differed significantly in regeneration capacity, and there were no genotype by treatment interaction effects. Regeneration occurred on more than 95% of the explants with `Early Black' and `Pilgrim' producing as many as 100 shoot tips per explant with one particular treatment. Emerging adventitious shoots were always observed on the adaxial side of the leaves regardless of explant orientation. However, regeneration was much greater when the adaxial side was in contact with the media. Regeneration efficiency was not significantly affected by leaf position (10 leaves). Elongation of shoot tips began about 2 weeks after the regenerating explants were transferred to the basal medium without hormones and continued for several months. Elongated shoot cuttings rooted readily.


2021 ◽  
Author(s):  
Yuan-yuan Meng ◽  
Shi-jie Song ◽  
Sven Landrein

Abstract Passiflora xishuangbannaensis (Passifloraceae) is endemic to a few sites of Mengyang nature reserve in Yunnan, Xishuangbanna and less than 40 individuals have been recorded. Nine Passiflora species are endemic to Yunnan with most species occurring in South America, making P. xishuangbannaensis highly significant and emblematic to the conservation work in the region. This study is designed to provide the first protocol for in vitro organogenesis and plant regeneration for ex situ conservation and reintroduction for an Asian Passiflora species. Using internodes, petioles and tendrils we optimize calli formation and root elongation using several plant growth regulators, individually or in combination. We also assess the genetic stability of regenerated cells. The maximum callus induction and shoot bud differentiation were both achieved on half Murashige and Skoog basal medium supplemented with 4.44 µM 6-Benzylaminopurine and 1.08 µM 1-Naphthaleneacetic acid. The best rooting was achieved from 30 days old, regenerated shoots on half Murashige and Skoog basal medium supplemented with 1.08 µM 1-Naphthaleneacetic acid. Micropropagated plants were subjected to inter simple sequence repeat markers analyses. Collectively, 86 bands were generated from 6 primers of which 12 bands were polymorphic, showing genetic variation between the regenerated plantlets and the original plant. Response to plant growth regulators was more specific than most other studies using South American species, which could be explained by the morphological and physiological differences between South American and Asian Passiflora species


1987 ◽  
Vol 65 (1) ◽  
pp. 72-75 ◽  
Author(s):  
J. Y. Peron ◽  
E. Regnier

A method for rapid micropropagation of sea kale (Crambe maritima L.) was developed. Petiole explants placed in vitro on a medium containing 0.5 mg/L indoleacetic acid (IAA), 6.0 mg/L kinetin, and 1.5 mg/L benzylaminopurine developed callus within 15 days and shoots within 28 days. Nearly four adventitious shoots could be developed within 3 weeks by placing the initial shoot on media without IAA. To develop roots, the shoots were then transferred to the basal medium containing 0.1 to 1.0 mg/L indolbutyric or α-naphthaleneacetic acid. Rooted plantlets were obtained within 2 or 3 weeks. After an acclimatization period of 6 weeks in a greenhouse in unsterilized medium, the plantlets could be set outdoors.


HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 2138-2142 ◽  
Author(s):  
Chiu-Yueh Hung ◽  
Jiahua Xie

A method of in vitro plant regeneration for both the selenium-hyperaccumulator Astragalus racemosus ‘Cream Milkvetch’ and the nonaccumulator Astragalus canadensis ‘Canadian Milkvetch’ was developed with two induction media, M1 and M2. The M1 and M2 contain Murashige and Skoog basal medium plus vitamins, 8.07 μm N-(2-chloro-4-pyridyl)-N′-phenylurea, 2.5% (w·v−1) sucrose, 0.7% (w·v−1) agar (pH 5.7), and 0.89 μm or 3.12 μm a-naphthaleneacetic acid, respectively. In vitro cultures were initiated on these two types of media with three types of explants: cotyledons, hypocotyls, and roots. More than 93% of cultured explants from both species could form calli or calli with shoots. With regard to shoot formation, A. canadensis could produce multiple shoots from all types of explants more efficiently than A. racemosus. The highest shoot induction was approximately three shoots per explant in A. racemosus, whereas A. canadensis could reach ≈10 shoots per explant. M1 could induce more shoots than M2 no matter what type of explant was used, but the overall induction rates were no significant difference. Among the three types of explants used, the cotyledons were the best explants for shoot induction in A. canadensis, whereas hypocotyls were the best in A. racemosus. In A. racemosus, shoots could also be obtained from calli on the rooting medium containing Murashige and Skoog basal plus vitamins, 2.84 μm indole-3 acetic acid, 2.5% (w·v−1) sucrose, and 0.7% (w·v−1) agar (pH 5.7). Approximately 43% of A. canadensis shoots and 19% of A. racemosus shoots could be rooted on the rooting medium.


1994 ◽  
Vol 21 (2) ◽  
pp. 139-143
Author(s):  
Q. L. Feng ◽  
H. E. Pattee ◽  
H. T. Stalker

Abstract Embryo abortion at an early stage of reproductive development is a major impediment for introgressing germplasm from wild to cultivated species of Arachis by interspecific hybridization. Ovule and embryo culture techniques have been used to rescue aborting hybrid embryos, but increased efficiency and recovery of very young tissues are still needed. The objective of this study was to induce growth and differentiation of A. duranensis proembryos. Seven-, 10-, and 14-d-old peg tips were cultured on a modified basal medium containing MS and B5 media combinations with 16 combination treatments using three growth regulators—1-naphthaleneacetic acid, gibberellic acid, and 6-benzylaminopurine—each at four levels. The results showed that seeds could be obtained in vitro by peg tip culture of four- to 16-celled proembryos. The favorable concentration ranges of growth regulators for pod formation and embryo development were 0.5-2.0 mg/L NAA, 0.05-0.5 mg/L GA3, and 0.05-0.2 mg/L 6-BAP. Over all three selected ages of pegs, the three best combinations of growth regulators resulted in 4.8, 4.7, and 3.5% pod formation, respectively.


2005 ◽  
Vol 48 (5) ◽  
pp. 717-722 ◽  
Author(s):  
Annette Droste ◽  
Anelise Machado da Silva ◽  
Adriana Vieira Matos ◽  
Júlia Winck de Almeida

Micropropagation studies were carried out using the seeds for establishing an in vitro culture of Vriesea gigantea and Vriesea philippocoburgii. Germination rate of V. gigantea was higher than of V. philippocoburgii. Plantlets of V. philippocoburgii gave rise to many adventitious shoots when cultivated in Knudson basal medium. In contrast, for V. gigantea, a higher salts-concentration was needed, so that the number of shoots was increased by Murashige and Skoog medium. Addition of activated charcoal and naphthaleneacetic acid in regeneration medium allowed the growth of shoots and the formation of roots, confirming the success of in vitro culture. The differences in expression of the genotypes reinforce the need of more research in order to set up the conditions that could offer the best response of the specific tissues.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1155
Author(s):  
Júlia Hunková ◽  
Monika Szabóová ◽  
Alena Gajdošová

The aim of this work was to assess the regeneration capacity of Amelanchier alnifolia var. cusickii and Lonicera kamtschatica cv. ‘Jugana’ from different types of explants under various hormonal treatments. The whole leaves, petioles, and internodal segments of in vitro plants were examined as explants. Several plant growth regulators (cytokinins and auxins) were evaluated for their ability to induce adventitious regeneration. Direct and indirect organogenesis was achieved under certain culture conditions in both species. The frequency of shoot regeneration was strongly dependent on concentrations of plant growth regulators in the induction media (L.kamtschatica ‘Jugana’) or concentrations of plant growth regulators in the induction media and type of explant (A. alnifolia var. cusickii). Results showed that leaves were not suitable explants for A. alnifolia var. cusickii. Both species were able to regenerate shoots from internodal segments and petioles. The highest induction of shoots was obtained on Murashige and Skoog (MS) medium enriched with 2 mg/L thidiazuron (TDZ) and 0.5 mg/L indole-3-butyric acid (IBA) for Amelanchier alnifolia and with 1 mg/L TDZ and 0.2 mg/L indole-3-acetic acid (IAA) for L. kamtschatica ‘Jugana’. Obtained adventitious shoots were further proliferated in order to investigate their multiplication capacity. The multiplication of shoots was successful in all cultivars, with the best results reported in A. alnifolia var. cusickii (7.07 shoots/explant on average).


2012 ◽  
Vol 12 ◽  
pp. 1-6 ◽  
Author(s):  
Shambhu P. Dhital ◽  
Hak T. Lim ◽  
Hira K. Manandhar

Response of widely grown potato cv. Superior and newly developed cvs. Gui valley and Bora valley to plant growth regulators (PGRs) for direct plant regeneration from internode, leaf blade and petiole explants were investigated. The explants were cultured on a MS solid medium supplemented with different concentrations and combinations of 6-benzylaminopurine (BAP), 1-naphthaleneacetic acid (NAA), zeatin, indole-3-acetic acid (IAA) and gibberellic acid (GA3). Potato cv. Superior, regenerated direct shoot without callus and root formation on MS solid medium supplemented with BAP or zeatin, proliferous roots were produced on NAA or IAA supplemented medium and only some calli were produced on GA3 supplemented medium. The regeneration response varied with different concentrations of PGRs, singly and also in combinations. In the case of combined application of PGRs, the highest shoot regeneration (75.3%) and number of shoot per explant (11.5) and number of roots per explant (7.0) were obtained from the MS solid medium supplemented with zeatin (2 mg l-1), NAA (0.1 mg l-1) and GA3 0.1 mg l-1). Among the three types of explants evaluated, internodes produced the highest number of shoots and roots for both potato cvs. Gui valley and Bora valley, and petiole produced the least number of shoots and roots. The regenerated shoots were rooted in PGRs-free MS solid medium and successfully established under glasshouse condition. Leaf, flower, and tuber morphology were identical to in vitro control and mother plants in the same conditions. This optimized regeneration system can be used for rapid shoot proliferation and also for gene transformation.DOI: http://dx.doi.org/10.3126/njst.v12i0.6471 Nepal Journal of Science and Technology 12 (2011) 1-6 


1993 ◽  
Vol 73 (3) ◽  
pp. 871-878 ◽  
Author(s):  
Hélène Desilets ◽  
Yves Desjardins ◽  
Richard R. Bélanger

Different culture media were compared at the initiation and multiplication steps to develop a rapid production system for geranium (Pelargonium × hortorum) in vitro. Different salt dilutions of the Murashige and Skoog (MS) (1962) mineral medium were used in combination with different concentrations of 1-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) in order to optimize initiation of shoots of four geranium cultivars. The use of a MS basal medium with half-strength macrosalts supplemented with 0.11 μM NAA and 0.89 μM BA gave the best results in initiation. More than 40% of the apices initiated on this medium produced multiple shoots within a month. Subsequently, the effect of different concentrations of growth regulators was quantified by the mean of "shoot doubling time" evaluation. The shortest time recorded was 10.5 d for a theoretical production of 1 × 109 plantlets/apex/year. This is the first quantitative evaluation of geranium production in vitro. Geranium plantlets rooted easily on a half-strength MS medium without growth regulators. Acclimatization of geranium plantlets was characterized by high survival rates (94%) and the plants thus produced were phenotypically comparable to seed-derived plants. Key words: Geranium, micropropagation, shoot doubling time, in vitro


HortScience ◽  
1997 ◽  
Vol 32 (5) ◽  
pp. 931-934 ◽  
Author(s):  
Eugenio Pérez-Molphe-Balch ◽  
Neftalí Ochoa-Alejo

An efficient system for in vitro regeneration by organogenesis starting from internodal stem segments from seedlings of Mexican lime (Citrus aurantifolia Christm. Swing.) and mandarin (C. reticulata Blanco cv. Monica) was developed. The best results were obtained when the wounded edges of internodal stem segments cut longitudinally were placed downward on the surface of the culture medium. The optimal culture medium from both species was Murashige and Skoog with vitamins from B5 medium, 5% sucrose, 33.3 μm BA and 5.4 μm NAA. The best response was obtained when the segments were incubated at 25 ± 2 °C for 21 d in darkness, followed by 29 d on a 16/8-h light/dark cycle (fluorescent light, 54 μmol·m-2·s-1). The best regeneration system tested allowed the attainment of adventitious shoots from 96% and 88% of the explants in Mexican lime and mandarin, respectively. In Mexican lime an average of 7.8 well-differentiated shoots per explant was obtained, and in mandarin the yield was 5.1. Rooting of 70% of the shoots was achieved in culture medium with NAA (2.7–5.4 μm) or IBA (2.5–4.9 μm). Of the rooted plants, 85% adapted well to soil conditions. Chemical names used: 6-benzylaminopurine (BA), α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA).


Sign in / Sign up

Export Citation Format

Share Document