scholarly journals In vitro culture of Vriesea gigantea and Vriesea philippocoburgii: two vulnerable bromeliads native to Southern Brazil

2005 ◽  
Vol 48 (5) ◽  
pp. 717-722 ◽  
Author(s):  
Annette Droste ◽  
Anelise Machado da Silva ◽  
Adriana Vieira Matos ◽  
Júlia Winck de Almeida

Micropropagation studies were carried out using the seeds for establishing an in vitro culture of Vriesea gigantea and Vriesea philippocoburgii. Germination rate of V. gigantea was higher than of V. philippocoburgii. Plantlets of V. philippocoburgii gave rise to many adventitious shoots when cultivated in Knudson basal medium. In contrast, for V. gigantea, a higher salts-concentration was needed, so that the number of shoots was increased by Murashige and Skoog medium. Addition of activated charcoal and naphthaleneacetic acid in regeneration medium allowed the growth of shoots and the formation of roots, confirming the success of in vitro culture. The differences in expression of the genotypes reinforce the need of more research in order to set up the conditions that could offer the best response of the specific tissues.

1987 ◽  
Vol 65 (1) ◽  
pp. 72-75 ◽  
Author(s):  
J. Y. Peron ◽  
E. Regnier

A method for rapid micropropagation of sea kale (Crambe maritima L.) was developed. Petiole explants placed in vitro on a medium containing 0.5 mg/L indoleacetic acid (IAA), 6.0 mg/L kinetin, and 1.5 mg/L benzylaminopurine developed callus within 15 days and shoots within 28 days. Nearly four adventitious shoots could be developed within 3 weeks by placing the initial shoot on media without IAA. To develop roots, the shoots were then transferred to the basal medium containing 0.1 to 1.0 mg/L indolbutyric or α-naphthaleneacetic acid. Rooted plantlets were obtained within 2 or 3 weeks. After an acclimatization period of 6 weeks in a greenhouse in unsterilized medium, the plantlets could be set outdoors.


HortScience ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 948-952 ◽  
Author(s):  
Luping Qu ◽  
James Polashock ◽  
Nicholi Vorsa

A very efficient adventitious regeneration (shoot organogenesis) system for cranberry (Vaccinium macrocarpon Ait.) leaves was developed. A basal medium consisting of Anderson's rhododendron salts and Murashige and Skoog's (MS) organics, supplemented with 10.0 μm thidiazuron (TDZ) and 5.0 μm 2ip, was effective for adventitious regeneration from leaves for the five cranberry cultivars tested: `Early Black', `Pilgrim', `Stevens', `Ben Lear', and `No. 35'. Parameters examined included: 1) varying combinations of three plant growth regulators (TDZ, 2ip, and NAA); 2) explant orientation (adaxial vs. abaxial side in contact with the medium); and 3) leaf position relative to the apical meristem from the source plant. Cultivars varied in regeneration frequency, but cultivar × growth regulator interaction was nonsignificant. With optimal treatment conditions, regeneration occurred on more than 95% of the explants, with `Early Black' and `Pilgrim' producing as many as 100 shoot meristems per explant. At all concentrations tested, NAA (as low as 0.1 μm) increased callus formation and significantly reduced regeneration. Emerging adventitious shoots were always observed on the adaxial side of the leaves regardless of explant orientation on the medium. Regeneration was much greater when the abaxial side was in contact with the medium, and was not related to leaf position on the source plants. Elongation of adventitious shoots began ≈2 weeks after transfer to the basal medium without growth regulators. Cuttings of elongated shoots rooted 100% both in vitro in the basal medium and ex vitro in shredded sphagnum moss. The high regeneration efficiency achieved by using this system will be very useful in the application of techniques, such as Agrobacterium- and particle bombardment-mediated transformation. Chemical names used: 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron, TDZ); N6-(γ-γ-dimethyallylamino) purine (2ip); α-naphthaleneacetic acid (NAA).


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1068
Author(s):  
Xiu Hu ◽  
Jiachuan Tan ◽  
Jianjun Chen ◽  
Yongquan Li ◽  
Jiaqi Huang

Hedychium coronarium J. Koenig is a multipurpose plant with significant economic value, but it has been overexploited and listed as a vulnerable, near threatened or endangered species. In vitro culture methods have been used for propagating disease-free propagules for its conservation and production. However, explant contamination has been a bottleneck in in vitro propagation due to the use of rhizomes as the explant source. Plants in the family Zingiberaceae have pseudostems that support inflorescences, while rhizomes are considered true stems. The present study, for the first time, reported that the pseudostem bears nodes and vegetative buds and could actually be true stems. The evaluation of different sources of explants showed that mature node explants derived from the stem were the most suitable ones for in vitro culture because of the lowest contamination and the highest bud break rates. Culture of mature node explants on MS medium supplemented with 13.32, 17.76, and 22.20 μM 6-benzylaminopurine (BA), each in combination with 9.08 μM thidiazurin (TDZ) and 0.05 μM α-naphthaleneacetic acid (NAA) induced the conversion of buds to micro-rhizomes in six weeks. More than 96% of the micro-rhizomes cultured on MS medium supplemented with 17.76 μM BA, 6.81 μM TDZ, and 2.46 μM indole-3-butyric acid (IBA) were converted to globular-shaped clumps with protocorm-like bodies (PLBs). Further culture of a piece of the clumps induced more than 15 adventitious shoots. Adventitious roots were produced at the base of adventitious shoots, and plantlets were readily transplanted to a substrate for acclimatization in a shaded greenhouse. The survival rate of the plants in the greenhouse was up to 90%. Plants grew vigorously, and there were no off-types from the regenerated 11,100 plants. Our study also, for the first time, shows that H. coronarium can be regenerated via PLBs, which may represent a new way of the in vitro propagation of H. coronarium. The established protocol could be used for the increased propagation of H. coronarium for conservation or commercial production.


2011 ◽  
Vol 77 (4) ◽  
pp. 269-273 ◽  
Author(s):  
Emilia Andrzejewska-Golec ◽  
Joanna Makowczyńska

The Far East medicinal plant - <em>Plantago camtschatica</em> was propagated in vitro from tips of shoots (obtained in vitro) and from different explants of 4-week-old seedlings: seedling tips, hypocotyls, cotyledons, roots, first leaves. To our knowledge there is no information in literature about in vitro culture of this plantain. MS basal medium, supplemented with 0.6 pM IAA in combination with various cytokinins (BA, KIN, ZEA), was used. After 6 weeks of culture, micropropagation rate (MR) - mean number of buds and shoots per explant - was calculated. Our study proved that <em>P. camtschatica</em> species was amenable to propagation in vitro from different kinds of explants. However, multiplication by adventitious shoot regeneration from hypocotyl explants was found to be the most suitable method for the propagation of this plant. Adventitious shoots could root without stimulation what allows to omit the stage of rooting. The plants obtained as a result of micropropagation were not phenotypically changed.


2018 ◽  
Vol 77 (1) ◽  
pp. 70-79 ◽  
Author(s):  
Erna Karalija ◽  
Sanja Ćavar Zeljković ◽  
Petr Tarkowski ◽  
Edina Muratović ◽  
Adisa Parić

AbstractKnautia sarajevensisis an endemic plant of the Dinaric Alps and is mainly distributed on Bosnian Mountains. Due to the quite large flower heads and easy maintenance, this plant has a potential use as a substitute ornamental plant forK. arvensisin perennial beds. The current study evaluated the germination process in different treatments in an attempt to suppress dormancy and increase germination rate, and to develop a successful protocol for micropropagation. An over 60% germination rate was achieved through cultivation of seeds on MS basal medium with reduced mineral nutrient composition and the absence of sucrose. On the other hand, a below 10% germination rate was achieved with untreated seeds. Suppression of apical dominance was achieved through application of high concentrations of kinetin, apical shoot decapitation or cultivation of shoots in liquid media. Overall, liquid cultures were more successful as a micropropagation system for this plant. Shoots spontaneously developed roots on multiplication treatments and were successfully acclimatized. Moreover, phenolic compound profile was analysed in the light of the possible medicinal potential of this plant. Variable amounts of total phenolic compounds as well as individual phenolics were recorded, according to treatment and solidification of media. An increase in rosmarinic acid content was reported for kinetin treatments and acclimatized plants comparing to mother plants in natural habitat. The present study shows that choice of cytokinin concentration, explant type as well as culture type influences not only shoot proliferation and apical dominance suppression but alsoin vitroproduction of phenolics.


2021 ◽  
Author(s):  
Yuan-yuan Meng ◽  
Shi-jie Song ◽  
Sven Landrein

Abstract Passiflora xishuangbannaensis (Passifloraceae) is endemic to a few sites of Mengyang nature reserve in Yunnan, Xishuangbanna and less than 40 individuals have been recorded. Nine Passiflora species are endemic to Yunnan with most species occurring in South America, making P. xishuangbannaensis highly significant and emblematic to the conservation work in the region. This study is designed to provide the first protocol for in vitro organogenesis and plant regeneration for ex situ conservation and reintroduction for an Asian Passiflora species. Using internodes, petioles and tendrils we optimize calli formation and root elongation using several plant growth regulators, individually or in combination. We also assess the genetic stability of regenerated cells. The maximum callus induction and shoot bud differentiation were both achieved on half Murashige and Skoog basal medium supplemented with 4.44 µM 6-Benzylaminopurine and 1.08 µM 1-Naphthaleneacetic acid. The best rooting was achieved from 30 days old, regenerated shoots on half Murashige and Skoog basal medium supplemented with 1.08 µM 1-Naphthaleneacetic acid. Micropropagated plants were subjected to inter simple sequence repeat markers analyses. Collectively, 86 bands were generated from 6 primers of which 12 bands were polymorphic, showing genetic variation between the regenerated plantlets and the original plant. Response to plant growth regulators was more specific than most other studies using South American species, which could be explained by the morphological and physiological differences between South American and Asian Passiflora species


2021 ◽  
Vol 31 (1) ◽  
pp. 51-60
Author(s):  
RI Oyediran ◽  
JO Afolabi ◽  
DB Olomola ◽  
FO Akanni

Nauclea diderrichii is a tree species of economic importance. However, its plantation establishment is limited by inadequate seedling production. Hence, there is ample scope of tissue culture for its mass propagation. Its in vitro plantlets development as affected by media strengths indicated that 100 % seed germination was obtained in full MS basal medium while the least (3.35 %) was from quarter-strength at 8 Weeks after inoculation (WAI). The effects of BAP and NAA assessed on the growth of its sub-cultured plantlets showed that highest number of leaves (17) and adventitious shoots (3) were obtained from MS basal medium supplemented with 0.1 mg/l BAP only. Whereas, highest shoot length (3.61 cm) and average number of roots (5/plantlet) were obtained from the same medium without hormone(s) at 8 WAI. Further sub-culturing into MS with 0.05 mg/l NAA resulted into plantlets having optimum shoot and massive root growth ready for acclimatization in 6 WAI. The plantlets were successfully acclimatized using coconuthusk/ topsoil mixture with 90 % survival. Plant Tissue Cult. & Biotech. 31(1): 51-60, 2021 (June)


2014 ◽  
Vol 4 (3) ◽  
pp. 96-103
Author(s):  
Abdelali Chourfi ◽  
Tajelmolk Alaoui ◽  
Ghizlane Echchgadda

Laurus nobilis L. is among the species which are most threatened by massive degradation in Morocco. The multiplication by seed or by cuttings gives very low percentages of recovery that is insufficient to meet the demand of growing market. In vitro culture proves to be a tremendous asset to solve this problem. Our work has focused on the study of seed germination of this species and its multiplication from microcuttings. Finally, we studied the ac-climatization ability of the plantlets resulting from this germination. The study of the germination, via the further measurement of the length of the aerial part and the roots and the number of axillary buds for nine weeks, showed that the MS basal medium was more efficient than media 1/2M.S and WPM. Among the eight tested hormones, IAA yielded the best growth of the plantlets. Hormonal combination of NAA and kinetin resulted into a per-centage of the greatest success in reaching 67 % micropropagation. The study also revealed that the MS basal medium in the presence of the IAA plants can acclimate most easily in two types of substrates with improved development in the peat alone.


2003 ◽  
Vol 83 (4) ◽  
pp. 873-876 ◽  
Author(s):  
A. N. Aziz ◽  
R. J. Sauvé ◽  
S. Zhou

Daylily (Hemerocallis sp. ‘Stella de Oro’) callus cultures initiated from ovules were bombarded with gold particles coated with plasmid harboring Basta® resistance gene. Resulting putative transgenic calli were selected after 3 wk on semi-solid Murashige and Skoog’s (MS) basal medium supplemented with 10 mg L-1 1-naphthaleneacetic acid, 2 mg L-1 6-benzylaminopurine and 3 mg L-1 phosphinothricin (PPT). Surviving calli regenerated shoots after 2 mo on semi-solid MS medium supplemented with 2 mg L-1 thiadiazuron and 1 mg L-1 PPT. Polymerase chain reaction and Southern blotting were used to confirm independent transformation events. Key words: Basta® resistance, in vitro, Hemerocallis


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 755
Author(s):  
Angela Ricci ◽  
Luca Capriotti ◽  
Bruno Mezzetti ◽  
Oriano Navacchi ◽  
Silvia Sabbadini

In the present study, an efficient system for the in vitro regeneration of adventitious shoots from the peach rootstock Hansen 536 leaves has been established. Twenty regeneration media containing McCown Woody Plant Medium (WPM) as a basal salt supplemented with different concentrations and combinations of plant growth regulators (PGRs) were tested. Expanded leaves along with their petiole from 3-week-old elongated in vitro shoot cultures were used as starting explants. The highest regeneration rate (up to 53%) was obtained on WPM basal medium enriched with 15.5 μM N6-benzylaminopurine (BAP). The influences on leaf regeneration of the ethylene inhibitor silver thiosulphate (STS) and of different combinations of antibiotics added to the optimized regeneration medium were also investigated. The use of 10 μM STS or carbenicillin (238 μM) combined with cefotaxime (210 μM) significantly increased the average number of regenerating shoots per leaf compared to the control. In vitro shoots were finally elongated, rooted and successfully acclimatized in the greenhouse. The results achieved in this study advances the knowledge on factors affecting leaf organogenesis in Prunus spp., and the regeneration protocol described looks promising for the optimization of new genetic transformation procedures in Hansen 536 and other peach rootstocks and cultivars.


Sign in / Sign up

Export Citation Format

Share Document