scholarly journals Assessment of the Utility of ISSR Markers for Evaluating Genetic Relationships Among Members of Asimina and Annona

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 786A-786
Author(s):  
Danielle Rascoe ◽  
Kirk W. Pomper* ◽  
Jeremiah Lowe ◽  
Sheri B. Crabtree ◽  
Har Mahdeem ◽  
...  

The genus Asimina has the only temperate representatives of the tropical Annonaceae, or Custard Apple family, and includes eight species that are indigenous to North America. The North American pawpaw Asimina triloba (L.) Dunal has the largest edible fruit native to the United States and is the best-known of these species. The USDA National Clonal Germplasm Repository for Asimina species is located at Kentucky State Univ. (KSU); therefore, assessment of genetic diversity is an important research priority for KSU. The inter-simple sequence repeat PCR (ISSR-PCR) methodology has been used successfully to characterize genetic diversity within and among populations of many plant species. The objective of this study was to assess the utility of ISSR markers in evaluating genetic relationships in members of the Asimina genus, as well as closely related tropical relatives in the Annona genus. Leaf samples were collected from three plants each of Asimina longifolia, A. obovata, A. parviflora, A. reticulata, A. tetramera and A. triloba. Leaf samples were also collected from three plants each of Annona cherimola, A. squamosa, A. reticulata, A. muricata, A. glabra, A. diversifolia, and A. montana. DNA was extracted from leaf samples and subjected to ISSR-PCR using the REDExtract-N-Amp™ Plant PCR Kit. DNA samples were screened with ISSR primers using the Univ. of British Columbia microsatellite primer set #9. Three primers, UBC812, UBC841, and UBC873 were found to produce 84 scorable ISSR markers and allowed the determination of genetic relationships among Asimina and Annona members examined.

Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 552-557 ◽  
Author(s):  
Jing Yang ◽  
Ling Tang ◽  
Ya-Li Guan ◽  
Wei-Bang Sun

Mexican sunflower is a native species of North and Central America that was introduced into China early last century, but it has widely naturalized and become a harmful invasive plant in tropical and subtropical regions in South China. Inter-simple sequence repeat (ISSR) markers were employed to assess genetic diversity and variation in Mexican sunflower populations from China and neighboring regions. The karyotypes of populations were also studied. Our research showed high levels of genetic diversity in all populations. The lowest genetic diversity estimates were represented in two populations in Laos, suggesting prevention of new introductions into Laos is critical. Partitioning of genetic variance revealed that genetic variation was mostly found within populations, and unweighted pair group method with arithmetic means (UPGMA) analysis showed that the introductions into China and Laos were independent. There were no obvious correlations between genetic relationships and geographic distance of populations in China, consistent with the human associated dispersal history of Mexican sunflower. Previous cytological data and our chromosome count (2n = 34) and karyotype analysis showed chromosome stability among populations. The high levels of genetic diversity within invasive Mexican sunflower populations could be challenging for its management in China, and further expansion and potential negative effects on ecological systems of this plant should be monitored.


2006 ◽  
Vol 86 (1) ◽  
pp. 251-257 ◽  
Author(s):  
Zhao Weiguo ◽  
Zhou Zhihua ◽  
Miao Xuexia ◽  
Wang Sibao ◽  
Zhang Lin ◽  
...  

The genetic diversity of 27 mulberry (Morus spp.) genotypes mainly from China was investigated using inter-simple sequence repeat (ISSR) markers to assist in addressing breeding objectives and conserving existing genetic resources. Of the 22 primers screened, 15 produced highly reproducible ISSR bands. Using these 15 primers, 138 discernible DNA fragments were generated with 126 (91.3%) being polymorphic, indicating considerable genetic variation among the mulberry genotypes studied. Genetic similarity ranged from 0.6014 between Yu 2 and Yu 711 to 0.9493 between Cuizhisang and Dejiang 10. The phenetic dendrogram based on ISSR data generated by the unweighed pair group method with arithmetical averages (UPGMA) method grouped the 27 accessions into two major clusters: cluster I, cultivated mulberry species (M. multicaulis Perr., M. alba Linn., M. atropurpurea oxb., M. bombycis Kiodz., M. australis Poir., M. rotundiloba Kiodz., M. alba var. pendula Dipp., M. alba var. macrophylla Loud., and M. alba var. venose Delile.); and cluster II, wild mulberry species (M. cathayana Hemsl., M. laevigata Wall., M. wittiorum Hand-Mazz., M. nigra Linn., and M. mongolica Schneid.). Our molecular analyses agree with the existing morphological classification of Morus and clarify the genetic relationships among mulberry species. Key words: Morus L., genetic diversity, inter-simple sequence repeat, relatedness


2011 ◽  
Vol 11 (4) ◽  
pp. 352-357 ◽  
Author(s):  
Fabiane Rabelo da Costa ◽  
Telma Nair Santana Pereira ◽  
Ana Paula Candido Gabriel ◽  
Messias Gonzaga Pereira

ISSR markers are polymorphic and their results easily reproducible. They are therefore intensely used in phylogenetic studies and sex differentiation of some economically interesting plant species. The objectives of this study were to analyze the genetic diversity in Caricaceae using ISSR markers, to identify a specific ISSR band that could distinguish female from hermaphrodite papaya genotypes and to verify whether this marker could be used for early sex differentiation. The ISSR-PCR was performed with nine primers and they could distinguish all species. It was observed that Jacaratia spinosa was closer to Vasconcellea than to Carica. The species C. papaya was only distantly related to both genera. A 500 bp ISSR marker was found in 25 % of the papaya genotypes studied. Specifically in these cases this marker could be used for early sex differentiation in papaya.


Genetika ◽  
2015 ◽  
Vol 47 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hasan Pinar ◽  
Sezai Ercisli ◽  
Mustafa Unlu ◽  
Mustafa Bircan ◽  
Aydın Uzun ◽  
...  

More recently the use of different molecular markers in fruit species to determine particularly genetic diversity, genetic relationships and cultivar identification has been gained more importance. In the study, 13 randomly amplified polimorfic DNA (RAPD) and 4 inter-simple sequence repeat (ISSR) markers were used to evaluate genetic relationships among 95 almong accessions (26 foreign cultivars and 69 national cultivars and selections). The all plant material found in Almond Germplasm Repository in Gaziantep, Turkey. Both RAPD and ISSR markers distinguished the almond cultivars and selections in various levels. 17 RAPD and ISSR markers yielded a total of 73 scorable bands, which 51 are polymorphic. The two marker system exhibited variation with regard to average band sizes and polymorphism ratio. The average polymorphism was higher in ISSR (88%) compared to RAPD (74%). RAPD and ISSR marker systems were found to be useful for determining genetic diversity among almong genotypes and cultivars. Combining of two dendrograms obtained through these markers show different clustering of 96 almond specimens without geographical isolation. These results supported that almonds in Turkey indicated considerable genetic diversity.


Genetika ◽  
2021 ◽  
Vol 53 (2) ◽  
pp. 671-686
Author(s):  
Mojdeh Mahdavi ◽  
Fariba Sharifnia ◽  
Fahimeh Salimpour ◽  
Akbar Esmaeili ◽  
Mohaddeseh Larypoor

Iran has a rich pistachio germplasm, thereby, the diversity and number of Iranian pistachio cultivars is unique in the world. Genetic diversity is crucial for sustainable use of genetic resources and conservation. As one of the oldest nut crops in human history, pistachio nuts have a high nutritional value and are commercially important. In the present study, the genetic variation of pistachio genotypes was investigated by nuclear ISSR markers. In this study, genetic relationships among 11 cultivars was assessed by using 12 inter simple sequence repeat (ISSR) primers. The total of 53 bands of which 44 (83%) were polymorphic were amplified by the 12 primers, an average of 4.4 bands per primer. The total number of amplified fragments was between 2 to 6 and the number of polymorphic fragments ranged from two to six. The amplified allele sizes ranged from 300 to 1600 bp. Pair-wise genetic similarity coefficients varied from 0.70 to 0.95. The UPGMA dendrogram differentiated the genotypes into two major clusters. The Mantel test showed correlation between genetic and geographical distance. AMOVA revealed a significant genetic difference among cultivars and showed that 35% of total genetic variation was due to within- cultivars diversity. The present results may be used for the conservation, core collection and future breeding of the pistachio.


2021 ◽  
pp. 1-11
Author(s):  
Karishma Kashyap ◽  
Rasika M. Bhagwat ◽  
Sofia Banu

Abstract Khasi mandarin (Citrus reticulata Blanco) is a commercial mandarin variety grown in northeast India and one of the 175 Indian food items included in the global first food atlas. The cultivated plantations of Khasi mandarin grown prominently in the lower Brahmaputra valley of Assam, northeast India, have been genetically eroded. The lack in the efforts for conservation of genetic variability in this mandarin variety prompted diversity analysis of Khasi mandarin germplasm across the region. Thus, the study aimed to investigate genetic diversity and partitioning of the genetic variations within and among 92 populations of Khasi mandarin collected from 10 cultivated sites in Kamrup and Kamrup (M) districts of Assam, India, using Inter-Simple Sequence Repeat (ISSR) markers. The amplification of genomic DNA with 17 ISSR primers yielded 216 scorable DNA amplicons of which 177 (81.94%) were polymorphic. The average polymorphism information content was 0.39 per primer. The total genetic diversity (HT = 0.28 ± 0.03) was close to the diversity within the population (HS = 0.20 ± 0.01). A high mean coefficient of gene differentiation (GST = 0.29) reflected a high level of gene flow (Nm = 1.22), indicating high genetic differentiation among the populations. Analysis of Molecular Variance (AMOVA) showed 78% of intra-population differentiation, 21% among the population and 1% among the districts. The obtained results indicate the existence of a high level of genetic diversity in the cultivated Khasi mandarin populations, indicating the need for preservation of each existing population to revive the dying out orchards in northeast India.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Runzhi Li ◽  
Shiwen Wang ◽  
Liusheng Duan ◽  
Zhaohu Li ◽  
Michael J. Christoffers ◽  
...  

Weed genetic diversity is important for understanding the ability of weeds to adapt to different environments and the impact of herbicide selection on weed populations. Genetic diversity within and among six wild oat populations in China varying in herbicide selection pressure and one population in North Dakota were surveyed using 64 polymorphic alleles resulting from 25 microsatellite loci. Mean Nei's gene diversity (h) for six wild oat populations from China was between 0.17 and 0.21, and total diversity (HT) was 0.23. A greater proportion of this diversity, however, was within (Hs= 0.19) rather than among (Gst= 0.15) populations. For the wild oat population from the United States,h= 0.24 andHT= 0.24 were comparable to the values for the six populations from China. Cluster analysis divided the seven populations into two groups, where one group was the United States population and the other group included the six Chinese populations. The genetic relationships among six populations from China were weakly correlated with their geographic distribution (r= 0.22) using the Mantel test. Minimal difference in gene diversity and small genetic distance (Nei's distance 0.07 or less) among six populations from China are consistent with wide dispersal of wild oat in the 1980s. Our results indicate that the wild oat populations in China are genetically diverse at a level similar to North America, and the genetic diversity of wild oat in the broad spatial scale is not substantially changed by environment, agronomic practices, or herbicide usage.


2021 ◽  
Author(s):  
Lalit Arya ◽  
Ramya Kossery Narayanan ◽  
Anjali Kak ◽  
Chitra Devi Pandey ◽  
Manjusha Verma ◽  
...  

Abstract Morinda (Rubiaceae) is considerably recognized for its multiple uses viz. food, medicine, dyes, firewood, tools, oil, bio-sorbent etc. The molecular characterization of such an important plant would be very useful for its multifarious enhanced utilization. In the present study, 31 Morinda genotypes belonging to two different species Morinda citrifolia and Morinda tomentosa collected from different regions of India were investigated using Inter Simple Sequence Repeat (ISSR) markers. Fifteen ISSR primers generated 176 bands with an average of 11.7 bands per primer, of which (90.34%) were polymorphic. The percentage of polymorphic bands, mean Nei’s gene diversity, mean Shannon’s information index in Morinda tomentosa and Morinda citrifolia was [(69.89%, 30.68%); (0.21 ± 0.19, 0.12 ± 0.20); (0.32 ± 0.27 0.17 ± 0.28)] respectively, revealing higher polymorphism and genetic diversity in Morinda tomentosa compared to Morinda citrifolia. Structure, and UPGMA cluster analysis placed the genotypes into well-defined separate clusters belonging to two species Morinda tomentosa and Morinda citrifolia revealing the utility of ISSR markers in species differentiation. Distinct ecotypes within a particular species could also be inferred emphasizing the collection and conservation of Morinda genotypes from different regions, in order to capture the overall diversity of respective species. Further higher diversity of M. tomentosa must be advanced for its utilization in nutraceutical, nutritional and other nonfood purposes.


Sign in / Sign up

Export Citation Format

Share Document