scholarly journals (296) Effects of Lighting Intensity on the Yield of Tomato and Pepper Crops Grown under Space Station (ISS) Environmental Conditions

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1009C-1009
Author(s):  
Matthew Sisko ◽  
Jeffrey Richards ◽  
Sharon Edney ◽  
Neil Yorio ◽  
Gary Stutte ◽  
...  

Of the many environmental variables, light intensity (PPF) has primary effect on photosynthesis and significantly influences crop yield. With the eventual use of a crop production system on the International Space Station (ISS), Mars transit vehicle, or in a lunar/Martian habitat, there exists certain engineering constraints that will likely affect the lighting intensity available to plants. Tomato and pepper are candidate crops being considered by NASA that were selected based on their applicability to such mission scenarios. To study the effects of lighting intensity, tomato (Lycopersicon esculentum L. cv. Red Robin) and pepper (Capsicum annuum L. cv. Hanging Basket) plants were grown under cool-white fluorescent (CWF) lamps with light intensities of 8.6, 17.2, or 26 mol·m-2 ·d-1, with a constant air temperature of 25 °C, 65% relative humidity, and CO2 supplementation of 1200 μmol·mol-1 in order to duplicate conditions plants might be subjected to in an open environment of a space cabin. Following 105 days of growth, edible and total mass for both tomato and pepper increased with increasing light levels. Fruit development and time to ripening was also affected by light treatments. The effects of lighting when combined with other environmental factors typical of spaceflight systems will help define crop production for future missions that incorporate plant-based life support technologies.

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1010A-1010
Author(s):  
Sharon Edney ◽  
Jeffrey Richards ◽  
Matthew Sisko ◽  
Neil Yorio ◽  
Gary Stutte ◽  
...  

Development of a crop production system that can be used on the International Space Station, long duration transit missions, and a lunar/Mars habitat, is a part of NASA's Advanced Life Support (ALS) research efforts. Selected crops require the capability to be grown under environmental conditions that might be encountered in the open cabin of a space vehicle. It is also likely that the crops will be grown in a mixed-cropping system to increase the production efficiency and variety for the crew's dietary supplementation. Three candidate ALS salad crops, radish (Raphanus sativus L. cv. Cherry Bomb II), lettuce (Lactuca sativa L. cv. Flandria) and bunching onion (Allium fistulosum L. cv. Kinka) were grown hydroponically as either monoculture (control) or mixed-crop within a walk-in growth chamber with baseline environments maintained at 50% relative humidity, 300 μmol·m-2·s-1 PPF and a 16-hour light/8-hour dark photoperiod under cool-white fluorescent lamps. Environmental treatments in separate tests were performed with either 400, 1200, or 4000 μmol·mol-1 CO2 combined with temperature treatments of 25 °C or 28 °C. Weekly time-course harvests were taken over 28 days of growth. Results showed that none of the species experienced negative effects when grown together under mixed-crop conditions compared to monoculture growth conditions.


Author(s):  
David Handy ◽  
Mary E. Hummerick ◽  
Anirudha R. Dixit ◽  
Anna Maria Ruby ◽  
Gioia Massa ◽  
...  

As we establish colonies beyond Earth, resupply missions will become increasingly difficult, logistically speaking, and less frequent. As a result, the on-site production of plants will be mission critical for both food production as well as complementing life support systems. Previous research on space crop production aboard the International Space Station (ISS) has determined that the spaceflight environment, though capable of supporting plant growth, is inherently stressful to plants. The combined stressors of this environment limits yield by inhibiting growth, as well as increasing susceptibility to infection by plant pathogens such as Fusarium spp. We propose that a consortium of space-viable, plant growth-promoting bacteria (PGPB) could assist in mitigating challenges to plant growth in a sustainable fashion. Here, we utilize biochemical and phenotypic assessments to identify potential PGPB derived from previously acquired isolates from the VEGGIE crop production system aboard the ISS. These assays confirmed the presence of bacteria capable of producing and/or interfering with plant hormones, facilitating plant uptake of high-value target nutrients for plants such as iron and phosphorus, and able to inhibit the growth of problematic fungal species. We discuss our findings with regards to their potential to support plant growth aboard spaceflight platforms as well as the Moon and Mars.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1009E-1009
Author(s):  
Jeffrey Richards ◽  
Sharon Edney ◽  
Neil Yorio ◽  
Gary Stutte ◽  
Matthew Sisko ◽  
...  

Environmental factors such as light intensity (PPF) and/or air temperature may be limiting engineering constraints in near or long-term space missions. This will potentially affect NASA's ability to provide either dietary augmentation to the crew or maintain a large-scale bioregenerative life support system. Crops being considered by NASA to provide supplemental food for crew consumption during such missions consist primarily of minimally processed “salad” species. Lettuce (Lactuca sativa L. cv. Flandria), radish (Raphanus sativus L. cv. Cherry Bomb II), and green onion (Allium fistulosum L. cv. Kinka) are being evaluated under a range of PPF and temperature environments likely to be encountered in space systems. Plants were grown for 35 days under cool-white fluorescent (CWF) lamps with light intensities of 8.6, 17.2, or 26 μmol·m-2·d-1, at air temperatures of 25 and 28 °C, and 50% relative humidity, and 1200 μmol·mol-1 CO2. Regardless of temperature, all three species showed an increase in edible mass with increasing light levels. When grown at 28 °C, edible mass of radish was significantly reduced at all lighting intensities compared to 25 °C, indicating a lower optimal temperature for radish. Understanding the interactions of these environmental factors on crop performance is a critical element to defining future missions that incorporate plant-based life support technologies.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1076D-1077 ◽  
Author(s):  
Sharon L. Edney ◽  
Jeffrey T. Richards ◽  
Matthew D. Sisko ◽  
Neil C. Yorio ◽  
Gary W. Stutte ◽  
...  

The development of a crop production system that can be used on the International Space Station, long-duration transit missions, and lunar or Mars habitats, has been a part of NASA's Advanced Life Support (ALS) research efforts. Crops that can be grown under environmental conditions that might be encountered in the open cabin of a space vehicle would be an advantageous choice. The production efficiency of the system would be enhanced by growing these crops in a mixed-crop arrangement. This would also increase the variety of fresh foods available for the crew's dietary supplementation. Three candidate ALS salad crops, radish (Raphanus sativus L. cv. Cherry Bomb II), lettuce (Lactuca sativa L. cv. Flandria), and bunching onion (Allium fistulosum L. cv. Kinka) were grown hydroponically as either monoculture (control) or mixed-crop within a walk-in growth chamber with baseline environments maintained at 22 °C, 50% RH, 17.2 mol·m-2·d-1 light intensity and a 16-h light/8-h dark photoperiod under cool-white fluorescent lamps. Tests were carried out at three different CO2 concentrations: 400, 1200, and 4000 μmol·mol-1. Weekly time-course harvests were taken over 28 days of growth, and fresh mass, dry mass, and harvest index were determined. Results showed that none of the species experienced negative effects when grown together under mixed-crop conditions compared to monoculture growth conditions under the range of environmental conditions tested.


Author(s):  
Leonid S. Bobe ◽  
Nikolay A. Salnikov

Analysis and calculation have been conducted of the process of low-pressure reverse osmosis in the membrane apparatus of the system for recycling hygiene water for the space station. The paper describes the physics of the reverse osmosis treatment and determines the motive force of the process, which is the difference of effective pressures (operating pressure minus osmotic pressure) in the solution near the surface of the membrane and in the purified water. It is demonstrated that the membrane scrubbing action is accompanied by diffusion outflow of the cleaning agent components away from the membrane. The mass transfer coefficient and the difference of concentrations (and, accordingly, the difference of osmotic pressures) in the boundary layer of the pressure channel can be determined using an extended analogy between mass transfer and heat transfer. A procedure has been proposed and proven in an experiment for calculating the throughput of a reverse osmosis apparatus purifying the hygiene water obtained through the use of a cleaning agent used in sanitation and housekeeping procedures on Earth. Key words: life support system, hygiene water, water processing, low-pressure reverse osmosis, space station.


1984 ◽  
Vol 106 (4) ◽  
pp. 287-291
Author(s):  
H. F. Brose

Renewed interest and planning for a Space Station, probably NASA’s next major space activity, poses a new challenge for ETCLS technology not previously emphasized. Over the past two decades, regenerative life support technology development for Space Station has been underway. This development effort was always aimed at regenerative (closed loop) life support for a full capability Space Station. The level of priority for manned space presence and current budgetary pressures dictate the need for a low cost profile program with an evolutionary growth Space Station. The initial capability may be a small station with a crew of 2 or 3. This station could grow in size and capability by the addition of modules to a station with a crew of 8 to 12 with the possibility of multiple stations in orbit. Depending upon the selected missions, the early station may be best served by an open or only partially closed loop ETCLS whereas the final station may need a completely closed loop ETCLS. The challenge would be to grow in-orbit the ETCLS system capability in a “no-throw-away” fashion in order to minimize annual and total program cost. This paper discusses a possible ETCLS system evolutionary growth scenario, the Space Station architecture variations influencing the ETCLS system design, and a technology preparedness plan for Space Station ETCLS.


Sign in / Sign up

Export Citation Format

Share Document