scholarly journals (277) Behavior of Glomus intraradices in Agave Roots Transformed with Agrobacterium rhizogenes

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1021C-1021
Author(s):  
Guillermo Rodríguez ◽  
Sergio Aguilar-Espinosa ◽  
Eugenio Perez-Molphe Balch ◽  
María del Rocío Flores-Bello ◽  
Javier Farias-Larios ◽  
...  

The present work is the first report in vitro on root induction of Agave salmiana Otto, using Agrobacterium rhizogenes. Several concentrations of bacteria and acetosyringone were used, and different inoculation sites were tested, such as leaves, shaft, and root. Incubation time in darkness was 6 days. The transformed adventitious roots appeared 25 days after inoculation. The best treatment was when the shaft was inoculated with: 1 × 108 bacteria/mL and 100 μm acetosyringone; in this treatment, induction of transformed roots was 57.5% in the inoculated sites. The activity and presence of the foreign genes in the transformed roots of A. salmianawere verified as follows: 1) histochemical staining for GUS activity was determined in 80% of the tested root; and 2) molecular analysis via PCR was made to verify the presence of nptII gene and rol B gene (both were present in 60% of the tested root). This is the first report of the arbuscular mycorrhizal colonization on wild roots and transformed roots of Agavewith Glomus intraradicesSchenck and Smith. The result of the monoxenic culture was as follows: mother spore germinated 5 days; the colonization of the transformed roots was 70%. Then we proceeded to the recovery of daughter spores, in which we obtained an average 300 daughter spores per petri dish, 6 months after inoculation.

2014 ◽  
Vol 6 (1) ◽  
pp. 290-293 ◽  
Author(s):  
M. Srinivasan ◽  
K. Kumar ◽  
K. Kumutha ◽  
P. Marimuthu

Arbuscular mycorrhizal fungi are soil fungi distributed worldwide, forming symbiosis with most of the vascular plants for their growth and survival, which is used for sustainable agriculture and ecosystem management. This study investigated the establishment of monoxenic cultures of Glomus intraradices in association with transformed carrot hairy root. The G.intraradices spores were isolated from sugarcane rhizosphere by wet sieving and decanting technique and propagated in open pot culture. Transformation in to carrot hairy root was done using Agrobacterium rhizogenes. Surface sterilization of G.intraradices spores co-cultured with transformed carrot hairy root in Modified Strulla and Romand (MSR) medium was found the host root growth as well as for germination AM spores. After three months of incubation in dark condition, significant production of extensive hyphal growth on MSR medium and an average of 8500-9000 spores per petri dish was observed. The in vitro inoculum exhibited higher potential of root colonization due to numerous intraradices mycelium with extensive spore load. The produced monoxenic inoculum can be used in place of traditional system where it has a advantage of producing contaminant free propagulas. Thus the monoxenic culture system, a powerful tool, of AM sporulation, can be used for the mass production of monoxenic inoculum of AM fungi besides studying its biology.


2014 ◽  
Vol 68 (4) ◽  
pp. 275-280 ◽  
Author(s):  
Branka Vinterhalter ◽  
Vladimir Orbović ◽  
Dragan Vinterhalter

Shoot cultures of <em>Gentiana punctata</em> L. were inoculated with suspension of <em>Agrobacterium rhizogenes</em> strain A4 M70GUS. Hairy roots which appeared 2-3 weeks later were cultured on hormone-free, liquid, WPM (Lloyd and McCown 1980) basal medium for more than 5 years (60 subcultures). Growth rate of transformed roots was higher than the growth rate of nontransformed roots. Spontaneous shoot regeneration occured only in three culture vessels in subcultures No. 40 and 42. Plants had phenotype characteristics typical for <em>A. rhizogenes</em> transformed plants including: wrincled leaves, short internodes, plagiotropic roots and in general their growth rate was reduced. These plants also manifested precocious formation of flower buds without vernalization and flowering under in vitro conditions. Flowers were pale yellow, the same as in the standard phenotype.


Botany ◽  
2010 ◽  
Vol 88 (6) ◽  
pp. 617-620 ◽  
Author(s):  
Yolande Dalpé ◽  
Sylvie Seguin

The in-vitro culture of arbuscular mycorrhizal fungi on excised roots, especially when performed on bi-compartmented Petri dishes, has proven to be an efficient system for the production of root-free fungal material. However, even after the contact between fungal hyphae and the excised roots in the proximal root compartment has occurred, up to several weeks may be required for the fungal runner hyphae to cross the median Petri dish wall and reach the distal fungal compartment. This delay is particularly long for the cultivation of slow-growing strains that usually colonize the substrate less aggressively. The delay is due to the difficulty the runner hyphae have in crossing the median Petri dish wall that separates compartments. To facilitate the passage of the fungus across the median wall, a “paper bridge” system has been devised and tested with a number of arbuscular mycorrhizal fungal strains. This method substantially accelerated fungal propagation and simplified the manipulations necessary. The proposed paper-bridge system is described and its advantages discussed.


Nematology ◽  
2011 ◽  
Vol 13 (6) ◽  
pp. 661-672
Author(s):  
Patrick Haydock ◽  
Peter Jones ◽  
Thomas Deliopoulos

AbstractSix potato (Solanum tuberosum) cultivars (Home Guard, Bintje, British Queen, Maris Piper, Pentland Dell and Saturna) were inoculated with Vaminoc (a commercial mixture of three selected arbuscular mycorrhizal fungal (AMF) isolates) and with two of the individual AMF isolates present in Vaminoc, Glomus intraradices (BioRize BB-E) and Glomus mosseae (isolate BEG 12). Root length colonisation by AMF at 6 weeks after shoot emergence ranged from 49 to 54%, with Vaminoc exhibiting the highest percentage. In comparison with control plants, AMF-inoculated plants accelerated the in vitro hatch (21% mean increase) of the potato cyst nematode (PCN) species Globodera pallida (but not of G. rostochiensis) in potato root leachate collected 3 weeks after shoot emergence. The effects of mycorrhization on PCN hatch were broadly similar across the six potato cultivars. This consistency supports the potential use of AMF inoculation of potato plants as part of an integrated pest management strategy for G. pallida.


Botany ◽  
2009 ◽  
Vol 87 (4) ◽  
pp. 387-400 ◽  
Author(s):  
Christine Juge ◽  
Annie Champagne ◽  
Andrew P. Coughlan ◽  
Nicolas Juge ◽  
Lael Parrott ◽  
...  

The present study is, to the best of our knowledge, the first to investigate the use of the fractal dimension (FD) to quantify the growth and development of undisturbed, fully functional arbuscular mycorrhizal (AM) hyphae developing in vitro. The majority of the work focused on the model AM fungus Glomus intraradices DAOM 181602. The time course study and final measurements of an intact mature extraradical mycelium allowed us to compare the development of the mycelium and the FD value. The final FD value of 1.62 for the mature mycelium is similar to that obtained for highly branched root systems and tree crowns. The FD method was used to characterize the morphology of germinative and presymbiotic hyphae in the presence of stimulatory (strigolactone GR-24, 0.1 µmol·L–1 and bisphenol A, 10 µmol·L–1) and inhibitory (NaCl, 80 mmol·L–1) molecules, and the extraradical phase in the presence of an inhibitory molecule (NaCl, 80 mmol·L–1). Where possible, results were compared with those obtained using the traditional grid-line (GL) technique. The FD approach allowed treatment effects to be accurately quantified, both in germinative and extraradical phases. In the second case, this technique provided a single quantitative value of extraradical hyphal growth that included runner hyphae (RH) networks, and fine-branching (FB) ramifications. This is in contrast to the GL technique, which provides a value for the estimation of RH, but which is not suitable for accurately measuring FB hyphae. Given the ease with which the FD values can be calculated, and the fact that this method can provide a single value for the quantification of extraradical hyphal growth and development, we suggest that this method is useful for in vitro studies. Furthermore under certain situations of germinative or presymbiotic growth, it may be used in concert with the GL method to provide a greater degree of information about hyphal morphology. The usefulness and limits of the FD method at different stages of the AM fungal growth cycle are discussed.


2003 ◽  
Vol 16 (5) ◽  
pp. 382-388 ◽  
Author(s):  
Rakefet David-Schwartz ◽  
Vijay Gadkar ◽  
Smadar Wininger ◽  
Roza Bendov ◽  
Gad Galili ◽  
...  

Arbuscular mycorrhizae (AM) represent an ancient symbiosis between mycorrhizal fungi and plant roots which co-evolved to exhibit a finely tuned, multistage interaction that assists plant growth. Direct screening efforts for Myc¯ plant mutants resulted in the identification of a tomato (Lycopersicon esculentum L. cv. Micro-Tom) mutant, M20, which was impaired in its ability to support the premycorrhizal infection (pmi) stages. The Myc¯ phenotype of the M20 mutant was a single Mendelian recessive trait, stable for nine generations, and nonallelic to a previously identified M161 pmi mutant. The M20 mutant was resistant to infection by isolated AM spores and colonized roots. Formation of Glomus intraradices appressoria on M20 roots was normal, as on wild-type (WT) plants, but in significantly reduced numbers. A significant reduction in spore germination was observed in vitro in the presence of M20 exudates relative to WT. Our results indicate that this new mutant shares similar physiological characteristics with the M161 pmi mutant, but has a more suppressive Myc¯ phenotype response.


Sign in / Sign up

Export Citation Format

Share Document