Variation in in vitro hatch of potato cyst nematodes in response to different potato cultivars inoculated with isolates of arbuscular mycorrhizal fungi

Nematology ◽  
2011 ◽  
Vol 13 (6) ◽  
pp. 661-672
Author(s):  
Patrick Haydock ◽  
Peter Jones ◽  
Thomas Deliopoulos

AbstractSix potato (Solanum tuberosum) cultivars (Home Guard, Bintje, British Queen, Maris Piper, Pentland Dell and Saturna) were inoculated with Vaminoc (a commercial mixture of three selected arbuscular mycorrhizal fungal (AMF) isolates) and with two of the individual AMF isolates present in Vaminoc, Glomus intraradices (BioRize BB-E) and Glomus mosseae (isolate BEG 12). Root length colonisation by AMF at 6 weeks after shoot emergence ranged from 49 to 54%, with Vaminoc exhibiting the highest percentage. In comparison with control plants, AMF-inoculated plants accelerated the in vitro hatch (21% mean increase) of the potato cyst nematode (PCN) species Globodera pallida (but not of G. rostochiensis) in potato root leachate collected 3 weeks after shoot emergence. The effects of mycorrhization on PCN hatch were broadly similar across the six potato cultivars. This consistency supports the potential use of AMF inoculation of potato plants as part of an integrated pest management strategy for G. pallida.

Nematology ◽  
2007 ◽  
Vol 9 (5) ◽  
pp. 719-729 ◽  
Author(s):  
Patrick Haydock ◽  
Peter Jones ◽  
Ken Devine ◽  
Thomas Deliopoulos

AbstractSuccessful mycorrhization of potato plants cv. Golden Wonder was achieved with three commercial preparations of arbuscular mycorrhizal fungi (AMF): Vaminoc (mixed-isolate inoculum) and two of its components, Glomus intraradices and Glomus mosseae. Potato cyst nematode hatching assays were conducted on the potato root leachate (PRL) produced by inoculated and non-inoculated potato plants to examine the effect of AMF inoculation on the hatching response of the two PCN species, Globodera rostochiensis and G. pallida. The overall hatch response of G. rostochiensis to the potato root leachate was greater than G. pallida. Root leachates from Vaminoc- and G. mosseae-inoculated plants were found to stimulate the hatch of G. pallida in the first 3 weeks after shoot emergence. Fractionation of root leachates with standardised carbon content by Sephadex G-10 chromatography revealed multiple AMF effects on hatching factor (HF) production. Root leachates from Vaminoc-inoculated plants contained markedly more G. pallida-active HF than all other treatments; by contrast, PRL from the three AMF treatments exhibited little variation in the quantity of G. rostochiensis-active HF produced. Several HF were PCN species-specific or species-selective, with those resolved from the G. intraradices and G. mosseae PRL profiles exhibiting an apparent preference for G. rostochiensis rather than G. pallida. Mycorrhization also significantly increased the root dry weight of plants.


Botany ◽  
2009 ◽  
Vol 87 (4) ◽  
pp. 387-400 ◽  
Author(s):  
Christine Juge ◽  
Annie Champagne ◽  
Andrew P. Coughlan ◽  
Nicolas Juge ◽  
Lael Parrott ◽  
...  

The present study is, to the best of our knowledge, the first to investigate the use of the fractal dimension (FD) to quantify the growth and development of undisturbed, fully functional arbuscular mycorrhizal (AM) hyphae developing in vitro. The majority of the work focused on the model AM fungus Glomus intraradices DAOM 181602. The time course study and final measurements of an intact mature extraradical mycelium allowed us to compare the development of the mycelium and the FD value. The final FD value of 1.62 for the mature mycelium is similar to that obtained for highly branched root systems and tree crowns. The FD method was used to characterize the morphology of germinative and presymbiotic hyphae in the presence of stimulatory (strigolactone GR-24, 0.1 µmol·L–1 and bisphenol A, 10 µmol·L–1) and inhibitory (NaCl, 80 mmol·L–1) molecules, and the extraradical phase in the presence of an inhibitory molecule (NaCl, 80 mmol·L–1). Where possible, results were compared with those obtained using the traditional grid-line (GL) technique. The FD approach allowed treatment effects to be accurately quantified, both in germinative and extraradical phases. In the second case, this technique provided a single quantitative value of extraradical hyphal growth that included runner hyphae (RH) networks, and fine-branching (FB) ramifications. This is in contrast to the GL technique, which provides a value for the estimation of RH, but which is not suitable for accurately measuring FB hyphae. Given the ease with which the FD values can be calculated, and the fact that this method can provide a single value for the quantification of extraradical hyphal growth and development, we suggest that this method is useful for in vitro studies. Furthermore under certain situations of germinative or presymbiotic growth, it may be used in concert with the GL method to provide a greater degree of information about hyphal morphology. The usefulness and limits of the FD method at different stages of the AM fungal growth cycle are discussed.


2003 ◽  
Vol 16 (5) ◽  
pp. 382-388 ◽  
Author(s):  
Rakefet David-Schwartz ◽  
Vijay Gadkar ◽  
Smadar Wininger ◽  
Roza Bendov ◽  
Gad Galili ◽  
...  

Arbuscular mycorrhizae (AM) represent an ancient symbiosis between mycorrhizal fungi and plant roots which co-evolved to exhibit a finely tuned, multistage interaction that assists plant growth. Direct screening efforts for Myc¯ plant mutants resulted in the identification of a tomato (Lycopersicon esculentum L. cv. Micro-Tom) mutant, M20, which was impaired in its ability to support the premycorrhizal infection (pmi) stages. The Myc¯ phenotype of the M20 mutant was a single Mendelian recessive trait, stable for nine generations, and nonallelic to a previously identified M161 pmi mutant. The M20 mutant was resistant to infection by isolated AM spores and colonized roots. Formation of Glomus intraradices appressoria on M20 roots was normal, as on wild-type (WT) plants, but in significantly reduced numbers. A significant reduction in spore germination was observed in vitro in the presence of M20 exudates relative to WT. Our results indicate that this new mutant shares similar physiological characteristics with the M161 pmi mutant, but has a more suppressive Myc¯ phenotype response.


2004 ◽  
Vol 14 (1) ◽  
pp. 39-48 ◽  
Author(s):  
C.F. Scagel

We assessed whether addition of arbuscular mycorrhizal fungus (AMF) inoculum or rhizosphere organisms from AMF inoculum alters aspects of flowering, corm production, or corm quality of harlequin flower (Sparaxis tricolor) for two growth cycles after inoculation. Using pasteurized and nonpasteurized growth medium, plants were inoculated with either inoculum of the AMF, Glomus intraradices, or washings of the inoculum containing rhizobacteria. Shoots of plants inoculated with AMF emerged 2 days earlier than shoots on noninoculated plants or plants inoculated with inoculum washings. Flowers on AMF-inoculated plants opened 7-8 days earlier and plants produced more flowers per plant and per inflorescence than noninoculated plants. AMF-inoculated plants partitioned a higher proportion of biomass to cormel production than to daughter corms and had higher concentration and contents of zinc, sulfur, nitrogen, amino acids, and carbohydrates than corms from noninoculated plants. The rhizosphere organisms associated with the AMF inoculum influenced several measures of plant development, growth, and corm production suggesting that there are organisms associated with our AMF inoculum that have beneficial effects on the growth and productivity of harlequin flower. While inoculation with AMF can promote shoot emergence, leaf production, and flower production of harlequin flower, inoculation also alters aspects of biomass partitioning and corm composition that play an important role in the production of this crop for corms and cormels.


2009 ◽  
Vol 22 (9) ◽  
pp. 1169-1178 ◽  
Author(s):  
Ricardo Aroca ◽  
Alberto Bago ◽  
Moira Sutka ◽  
José Antonio Paz ◽  
Custodia Cano ◽  
...  

Roots of most plants in nature are colonized by arbuscular mycorrhizal (AM) fungi. Among the beneficial effects of this symbiosis to the host plant is the transport of water by the AM mycelium from inaccessible soil water resources to host roots. Here, an aquaporin (water channel) gene from an AM fungus (Glomus intraradices), which was named GintAQP1, is reported for the first time. From experiments in different colonized host roots growing under several environmental conditions, it seems that GintAQP1 gene expression is regulated in a compensatory way regarding host root aquaporin expression. At the same time, from in vitro experiments, it was shown that a signaling communication between NaCl-treated mycelium and untreated mycelium took place in order to regulate gene expression of both GintAQP1 and host root aquaporins. This communication could be involved in the transport of water from osmotically favorable growing mycelium or host roots to salt-stressed tissues.


2014 ◽  
Vol 6 (1) ◽  
pp. 290-293 ◽  
Author(s):  
M. Srinivasan ◽  
K. Kumar ◽  
K. Kumutha ◽  
P. Marimuthu

Arbuscular mycorrhizal fungi are soil fungi distributed worldwide, forming symbiosis with most of the vascular plants for their growth and survival, which is used for sustainable agriculture and ecosystem management. This study investigated the establishment of monoxenic cultures of Glomus intraradices in association with transformed carrot hairy root. The G.intraradices spores were isolated from sugarcane rhizosphere by wet sieving and decanting technique and propagated in open pot culture. Transformation in to carrot hairy root was done using Agrobacterium rhizogenes. Surface sterilization of G.intraradices spores co-cultured with transformed carrot hairy root in Modified Strulla and Romand (MSR) medium was found the host root growth as well as for germination AM spores. After three months of incubation in dark condition, significant production of extensive hyphal growth on MSR medium and an average of 8500-9000 spores per petri dish was observed. The in vitro inoculum exhibited higher potential of root colonization due to numerous intraradices mycelium with extensive spore load. The produced monoxenic inoculum can be used in place of traditional system where it has a advantage of producing contaminant free propagulas. Thus the monoxenic culture system, a powerful tool, of AM sporulation, can be used for the mass production of monoxenic inoculum of AM fungi besides studying its biology.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.


1998 ◽  
Vol 28 (1) ◽  
pp. 150-153
Author(s):  
J N Gemma ◽  
R E Koske ◽  
E M Roberts ◽  
S Hester

Rooted cuttings of Taxus times media var. densiformis Rehd. were inoculated with the arbuscular mycorrhizal fungi Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe or Glomus intraradices Schenck and Smith and grown for 9-15 months in a greenhouse. At the completion of the experiments, leaves of inoculated plants contained significantly more chlorophyll (1.3-4.1 times as much) than did noninoculated plants. In addition, mycorrhizal plants had root systems that were significantly larger (1.3-1.4 times) and longer (1.7-2.1 times) than nonmycorrhizal plants, and they possessed significantly more branch roots (1.3-2.9 times). No differences in stem diameter and height or shoot dry weight were evident at the end of the experiments, although the number of buds was significantly greater in the cuttings inoculated with G. intraradices after 15 months.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


Sign in / Sign up

Export Citation Format

Share Document