scholarly journals Wine Grape Response to Foliar Particle Film under Differing Levels of Preveraison Water Stress

HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1392-1397 ◽  
Author(s):  
Krista Shellie ◽  
D. Michael Glenn

We investigated how foliar application of kaolin particle film influenced diurnal leaf gas exchange, leaf water potential, yield, and berry maturity of a red (‘Merlot’) and white (‘Viognier’) wine grape (Vitis vinifera L.) cultivar under differing levels of water stress over two growing seasons (2005 and 2006) in the warm, semiarid climate of southwestern Idaho. Net diurnal stomatal conductance (g S) was increased by particle film and the effect varied according to vine water status. Particle film delayed the onset of diurnal decline in g S under mild water stress (leaf water potential ≈ –1.2 MPa) but had no influence on leaf gas exchange when vines were under greater water stress (leaf water potential ≈ –1.4 MPa). Correlation between soluble solids concentration and titratable acidity (‘Viognier’) and between berry fresh weight and yield (‘Merlot’) was higher with than without particle film, suggesting that particle film may attenuate the influence of other factors affecting expression of these traits. Particle film was associated with an increase in berry weight in ‘Merlot’ and with an increase in berry soluble solids concentration in ‘Viognier’, suggesting that the film may increase vine-carrying capacity. Midday leaf water potential throughout the growing season was not influenced by particle film. Fruit surface browning was observed on deficit-irrigated, particle film-treated vines on exposed clusters on the west side of the canopy, indicating that the film did not eliminate development of heat stress symptoms on fruit under the most extreme environmental conditions evaluated in this study.

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 601c-601
Author(s):  
Chuhe Chen ◽  
J. Scott Cameron ◽  
Stephen F. Klauer

Leaf water potential (LWP), relative water content (RWC), gas exchange characteristics, and specific leaf weight (SLW) were measured six hours before, during, and after water stress treatment in F. chiloensis and F. ×ananassa grown in growth chambers. The leaves of both species showed significantly lower LWP and RWC as water stress developed. F. ×ananassa had consistency lower LWP under stressed and nonstressed conditions than F. chiloensis. F. ×ananassa had higher RWC under nonstressed conditions, and its RWC decreased more rapidly under water stress than F. chiloensis. In comparison to F. ×ananassa, F. chiloensis had significantly higher CO2 assimilation rate (A), leaf conductance (LC), and SLW, but not transpiration rate (Tr), under stressed and nonstressed conditions. LC was the most sensitive gas exchange characteristic to water stress and decreased first. Later, A and stomatal conductance were reduced under more severe water stress. A very high level of Tr was detected in F. ×ananassa under the most severe water stress and did not regain after stress recovery, suggesting a permanent damage to leaf. The Tr of F. chiloensis was affected less by water stress. Severe water stress resulted in higher SLW of both species.


2004 ◽  
Vol 16 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Carlos Henrique Britto de Assis Prado ◽  
Zhang Wenhui ◽  
Manuel Humberto Cardoza Rojas ◽  
Gustavo Maia Souza

Predawn leaf water potential (psipd) and morning values of leaf gas exchange, as net photosynthesis (A), stomatal conductance (gs), transpiration (E), and morning leaf water potential (psimn) were determined seasonally in 22 woody cerrado species growing under natural conditions. Despite the lower mean values of psipd in the dry season (-0.35 ± 0.23 MPa) compared to the wet season (-0.08 ± 0.03 MPa), the lowest psipd in the dry season (-0.90 ± 0.00 MPa) still showed a good nocturnal leaf water status recovery for all species studied through out the year. Mean gs values dropped 78 % in the dry season, when the vapor pressure of the air was 80% greater than in the wet season. This reduction in gs led to an average reduction of 33% in both A and E, enabling the maintainance of water use efficiency (WUE) during the dry season. Network connectance analysis detected a change in the relationship between leaf gas exchange and psimn in the dry season, mainly between gs-E and E-WUE. A slight global connectance value increase (7.25 %) suggested there was no severe water stress during the dry season. Multivariate analysis showed no link between seasonal response and species deciduousness, suggesting similar behavior in remaining leaves for most of the studied species concerning leaf gas exchange and psimn under natural drought.


2007 ◽  
Vol 29 (2) ◽  
pp. 355-358 ◽  
Author(s):  
José Moacir Pinheiro Lima Filho

The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit.


Trees ◽  
2000 ◽  
Vol 14 (5) ◽  
pp. 0263 ◽  
Author(s):  
M. S. Mielke ◽  
M. A. Oliva ◽  
N.F. de Barros ◽  
R. M. Penchel ◽  
C. A. Martinez ◽  
...  

1991 ◽  
Vol 116 (1) ◽  
pp. 156-160 ◽  
Author(s):  
Kirk D. Larson ◽  
Bruce Schaffer ◽  
Frederick S. Davies

The effect of flooding on container-grown `Tommy Atkins' mango (Mangifera indica L.) trees on two rootstock, and on container-grown seedling `Peach' mango trees, was investigated by evaluating vegetative growth, net gas exchange, and leaf water potential. In general, flooding simultaneously reduced net CO2 assimilation (A) and stomatal conductance (gs) after 2 to 3 days. However, flooding did not affect leaf water potential, shoot extension growth, or shoot dry weight, but stem radial growth and root dry weight were reduced, resulting in larger shoot: root ratios for flooded trees. Mortality of flooded trees ranged from 0% to 45% and was not related to-rootstock scion combination. Hypertrophied lenticels were observed on trees that survived flooding but not on trees that died. The reductions in gas exchange, vegetative growth, and the variable tree mortality indicate that mango is not highly flood-tolerant but appears to possess certain adaptations to flooded soil conditions.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1143f-1143
Author(s):  
Thomas G. Ranney ◽  
R.E. Bir ◽  
W.A. Skroch

In order to evaluate and compare adaptability to dry sites, plant water relations and leaf gas exchange were compared in response to water stress among six birch species: monarch birch (Betula maximowicziana), river birch (B. nigra), paper birch (B. papyrifera), European birch (B. pendula), `Whitespire' Japanese birch (B. platyphylla var. japonica `Whitespire'), and gray birch (B. pendula). After 28 days without irrigation, Japanese birch maintained significantly higher stomatal conductance (gs) and net photosynthesis (Pn) than did any of the other species, despite having one of the lowest mid-day water potentials. Evaluation of tissue water relations, using pressure-volume methodology, showed no evidence of osmotic adjustment for any of these species in response to water stress. However, there was substantial variation among species in the water potential at the turgor loss point; varying from a high of -1.34 MPa for river birch to a low of -1.78 MPa for Japanese birch. Rates of Pn and gs under mild stress (mean predawn leaf water potential of -0.61 MPa) were negatively correlated with leaf osmotic potential at full turgor and the leaf water potential at the turgor loss point.


2006 ◽  
Vol 18 (2) ◽  
pp. 315-323 ◽  
Author(s):  
Maria Astrid Rocha Liberato ◽  
José Francisco de Carvalho Gonçalves ◽  
Larissa Ramos Chevreuil ◽  
Adamir da Rocha Nina Junior ◽  
Andreia Varmes Fernandes ◽  
...  

The physiological performance of acariquara (Minquartia guianensis) seedlings submitted to water deficit and the recovery of physiological parameters during rehydration were investigated in a greenhouse experiment. The analyzed parameters were: leaf water potential, gas exchange and chlorophyll a fluorescence. After thirty-five days, non-irrigated plants exhibited a leaf water potential 70 % lower compared to control plants (irrigated daily) and the stomatal conductance reached values close to zero, inducing a severe decrease in gas exchange (photosynthesis and transpiration). Six days after the beginning of the rehydration of drought-stressed plants, the results demonstrated that water stress did not irreversibly affect gas exchange and quantum efficiency of photosystem II (PSII) in M. guianensis seedlings, since four to six days after rehydration the plants exhibited total recovery of the photosynthetic apparatus. We conclude that M. guianensis presented good tolerance to water stress and good capacity to recover the physiological performance related to leaf water status, photosynthesis and photochemical efficiency of PS II under hydric stress, suggesting substantial physiological plasticity during the juvenile phase for this tree species.


Topola ◽  
2020 ◽  
pp. 15-24
Author(s):  
Lazar Kesić ◽  
Vanja Vuksanović ◽  
Velisav Karaklić ◽  
Erna Vaštag

Differences between genotypes are considered to be the most important requisite for a resilient urban forest. Analyses of physiological traits, such as leaf water potential and leaf gas exchange could provide useful insight into the capacity of different species and genotypes to grow in harsh urban environments. In the present study, a variation of midday (Psmd) and predawn (Pspd) leaf water potential, net photosynthesis (A), rate of transpiration (E), stomatal conductance (gs), and intercellular CO2 concentration (Ci) of seven Silver linden genotypes (Tilia tomentosa Moench), planted in the urban environment in Novi Sad, were examined. Analysis of variance and LSD tests were used to show differences between studied silver linden genotypes. The results showed significant differences for all observed leaf gas exchange parameters (A, E, gs, Ci, Pspd and Psmd) between genotypes. The results indicate better physiological performances of genotypes T3, in comparison to other observed genotypes under the prevailing environmental condition of the studied site in the urban environment.


Sign in / Sign up

Export Citation Format

Share Document