scholarly journals Adjustment of Mineral Elements in the Culture Medium for the Micropropagation of Three Vriesea Bromeliads from the Brazilian Atlantic Forest: The Importance of Calcium

HortScience ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Alice Noemí Aranda-Peres ◽  
Lázaro Eustáquio Pereira Peres ◽  
Edson Namita Higashi ◽  
Adriana Pinheiro Martinelli

Many different species of Bromeliaceae are endangered and their conservation requires specific knowledge of their growth habits and propagation. In vitro culture of bromeliads is an important method for efficient clonal propagation and in vitro seed germination can be used to maintain genetic variability. The present work aims to evaluate the in vitro growth and nutrient concentration in leaves of the epiphyte bromeliads Vriesea friburguensis Mez, Vriesea hieroglyphica (Carrière) E. Morren, and Vriesea unilateralis Mez, which exhibit slow rates of growth in vivo and in vitro. Initially, we compared the endogenous mineral composition of bromeliad plantlets grown in half-strength Murashige and Skoog (MS) medium and the mineral composition considered adequate in the literature. This approach suggested that calcium (Ca) is a critical nutrient and this was considered for new media formulation. Three new culture media were defined in which the main changes to half-strength MS medium were an increase in Ca, magnesium, sulfur, copper, and chloride and a decrease in iron, maintaining the nitrate:ammonium rate at ≈2:1. The main difference among the three new media formulated was Ca concentration, which varied from 1.5 mm in half-strength MS to 3.0, 6.0, and 12 mm in M2, M3, and M4 media, respectively. Consistently, all three species exhibited significantly higher fresh and dry weight on M4, the newly defined medium with the highest level of Ca (12 mm). Leaf nitrogen, potassium, zinc, magnesium, and boron concentrations increased as Ca concentration in the medium increased from 1.5 to 12 mm.

2021 ◽  
Author(s):  
Rachel L. Neve ◽  
Brent D. Carrillo ◽  
Vanessa V. Phelan

In vitro culture media are being developed to understand how host site-specific nutrient profiles influence microbial pathogenicity and ecology. To mimic the cystic fibrosis (CF) lung environment, a variety of artificial sputum media (ASM) have been created. However, the composition of these ASM vary in the concentration of key nutrients, including amino acids, lipids, DNA, and mucin. In this work, we used feature-based molecular networking (FBMN) to perform comparative metabolomics of Pseudomonas aeruginosa , the predominant opportunistic pathogen infecting the lungs of people with CF, cultured in nine different ASM. We found that the concentration of aromatic amino acids and iron from mucin added to the media contribute to differences in the production of P. aeruginosa virulence-associated secondary metabolites. IMPORTANCE Different media formulations aiming to replicate in vivo infection environments contain different nutrients, which affects interpretation of experimental results. Inclusion of undefined components, such as commercial porcine gastric mucin (PGM), in an otherwise chemically defined medium can alter the nutrient content of the medium in unexpected ways and influence experimental outcomes.


2018 ◽  
Vol 77 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Mahipal S. Shekhawat ◽  
M. Manokari

AbstractHybanthus enneaspermusis a rare medicinal plant. We defined a protocol for micropropagation,ex vitrorooting of cloned shoots and their acclimatization. Surface-sterilized nodal segments were cultured on Murashige and Skoog (MS) medium with different concentrations of 6-benzylaminopurine (BAP) and kinetin (Kin). Medium supplemented with 1.5 mg L−1BAP was found optimum for shoot induction from the explants and 6.4±0.69 shoots were regenerated from each node with 97% response. Shoots were further proliferated maximally (228±10.3 shoots per culture bottle with 7.5±0.43 cm length) on MS medium augmented with 1.0 mg L−1each of BAP and Kin within 4–5 weeks. The shoots were rootedin vitroon half strength MS medium containing 2.0 mg L−1indole-3 butyric acid (IBA). The cloned shoots were pulse-treated with 300 mg L–1 of IBA and cultured on soilrite® in a greenhouse. About 96% of the IBA-pulsed shoots rootedex vitroin soilrite®, each shoot producing 12.5±0.54 roots with 5.1±0.62 cm length. Theex vitrorooted plantlets showed a better rate of survival (92%) in a field study thanin vitrorooted plantlets (86%). A comparative foliar micromorphological study ofH. enneaspermuswas conducted to understand the micromorphological changes during plant developmental processes fromin vitrotoin vivoconditions in terms of variations in stomata, vein structures and spacing, and trichomes. This is the first report onex vitrorooting inH. enneaspermusand the protocol can be exploited for conservation and large-scale propagation of this rare and medicinally important plant.


2014 ◽  
Vol 6 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Kishore Kumar CHIRUVELLA ◽  
Arifullah MOHAMMED ◽  
Rama Gopal GHANTA

Like most of the medicinal plants Soymida febrifuga (Meliaceae) possess significance for its valuable secondary metabolites. Multiplication of this endemic plant is limited by difficulty in rooting of stem cuttings, high seedling mortality rates and low seed viability period. Hence efficient protocols for in vitro mass propagation has been established from field grown and aseptic seedlings explants. Strikingly, we observed aberrant structures such as vitrified shoots, faciated shoots, albino shoots as well shoot necrosis during its micropropagation. These phenotypic maladies were observed during organogenesis and rooting. Compared to other abnormalities, shoot necrosis nonetheless was frequent and pronounced leading to plant death. Shoots when subjected to rooting also displayed necrosis which was controlled by transferring to MS medium containing various concentrations and combinations of calcium levels, activated charcoal, glucose, fructose and auxins. Microshoots initiated roots on half strength MS medium with IBA and IAA individually or in combination within two weeks. MS half strength solid medium supplemented with CAN (556 mg l–1), CAP (1.0 mg l–1), IAA (2.0 mg l–1) and IBA (2.0 mg l–1) in combination was found to be more efficient in showing high frequency (95%) of root regeneration. Rooted plantlets were successfully hardened and 70-85% of regenerated plants were successfully acclimatized to natural environment. In vitro derived plantlets were morphologically similar to in vivo plants.


2018 ◽  
Vol 30 (2) ◽  
pp. 283-294 ◽  
Author(s):  
Mani Manokari ◽  
Mahipal S. Shekhawat

Abstract The present study reports an efficient in vitro propagation system for Turnera ulmifolia using nodal segments as explants. Turnera ulmifolia (Passifloraceae) is an important garden plant with multipotent medicinal values. Effective shoot proliferation was achieved on agar gelled MS medium (Murashige and Skoog, 1962). The maximum number of shoots (8.3 ± 0.57) per initial explant was obtained on MS medium supplemented with 8.88 mM of 6-benzylaminopurine (BAP) and 0.54 mM of α-naphthalene acetic acid (NAA). The highest number of shoots (59.5 ± 2.10) proliferated on semi-solid MS medium (with agar) augmented with 2.22 mM of BAP and 2.32 mM of kinetin (Kin) along with 0.54 mM of NAA. Longer (4-5 cm) and healthy shoots were rooted (12.0 ± 0.10 roots per shoot) on half-strength MS medium fortified with 9.84 mM of indole-3 butyric acid (IBA). The in vitro regenerated plantlets were hardened in the greenhouse and transferred to the field. Significant developmental changes were observed in the foliar micromorphology of in vitro raised plantlets when these were transferred to the field. The stomatal index was gradually reduced (26.72 to 21.25) in the leaves from in vitro to field environments. But, vein-islets and veinlet terminations (13.4 and 7.6) were increased (39.7 and 18.4) respectively from in vitro to in vivo grown plants. Simple, unicellular, less frequent and underdeveloped trichomes were observed with the leaves of in vitro plants but fully developed trichomes recorded in the field transferred plants. The study could help in understanding the response and adaptation of tissue culture raised plantlets towards changed environmental conditions.


Rodriguésia ◽  
2019 ◽  
Vol 70 ◽  
Author(s):  
Monique Cristine R. Juras ◽  
Jackeline Jorge ◽  
Rosete Pescador ◽  
Wagner de Melo Ferreira ◽  
Vivian Tamaki ◽  
...  

Abstract Cattleya xanthina is a Neotropical orchid endemic to the Brazilian Atlantic Rainforest, at high risk of extinction. In this paper, we investigated the effects of different culture media on C. xanthina as well as on their endogenous nitrogen status. Culture media studied: Knudson C (KC), Vacin and Went (VW), and Murashige and Skoog (MS), the latter used at two different concentration (full and half-strength; MS/2). After 180 days, plants were transferred to MS medium with different NAA and BA concentrations. In each treatment, biometric parameters were measured and the endogenous levels of photosynthetic pigments, total protein, nitrate and ammonium ions were quantified. Plants grown on KC medium had the lowest concentration of nitrogen but exhibited the greatest shoot development, production of photosynthetic pigments and total protein. Results of growth regulators showed that the highest concentration of auxin stimulated root development and the production of photosynthetic pigments, and that a higher concentration of cytokinin promoted protein synthesis and the development of shoots. Most successful acclimatization was obtained when a mixture of Sphagnum and Pinus bark was used as the substrate.


2021 ◽  
Vol 4 (46) ◽  
pp. 17-17
Author(s):  
Alexander Saakian ◽  
◽  

Abstract The aim of this study is to develop and improve methods of in vitro propagation of representatives of Dactylorhiza: D.baltica , D. fuchsii. For the study, we used protocorms obtained by the asymbiotic germination of seed during 90 days. It has been established that half-strength of Murashige and Skoog (1962) medium (½ MS) supplemented with 1-2 mg/l 6-Benzylaminopurine(6-BAP), potato puree (20g/l), and charcoal (1g/l) effectively influenced the development of protocorms, and seedlings formation in the studied species. The result of the study showed that the survival rate of protocorms was high in all experimental culture media, but in D. fuchsii it was better at a concentration 2mg/l of 6-BAP (95.4%), while in D. baltica it was high at 1mg/l (87.0%). The highest percentage of multiple protocorms (68%) and the formation of new secondary protocorms in D. fuchsii (5,5±0,3 units) were observed on a culture medium containing 2 mg/l 6-BAP. The highest percent of rooting of D. fuchsii protosoms (78%) and length of roots (0.9cm) observed in ½ MS medium without growth regulators. During the development of D. baltica protosoms, the culture medium of ½ MS containing 1 mg/l 6-BAP had the best effect on the number of roots (1.8±0.1root/protosom), while the medium supplemented with 2mg/l of 6-BAP contributed to the formation of a larger number of new secondary protocorms (3,2±0,1protocorm/unit). During the subsequent cultivation of protosoms of D. baltica on a culture medium containing 1 mg/l it was observed an increase in the height of shoots (4,8±0,3 см), and the length of roots (2,2±0,1 см), wherein the number of newly formed protocorms was higher by 30% on the medium supplemented with 2 mg/l 6-BAP. Keywords: DACTYLORHIZA BALTICA, DACTYLORHIZA FUCHSII, IN VITRO, PROTOCORMS, ORGANIC ADDITIVES


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Mahipal S. Shekhawat ◽  
M. Manokari

An efficient micropropagation protocol has been developed for Marsilea quadrifolia L. through direct organogenesis. The mature rhizomes were used as explants and successfully sterilized using 0.1% HgCl2 for the establishment of cultures. The multiple shoots were differentiated from the explants on Murashige and Skoog (MS) medium augmented with 6-benzylaminopurin (BAP). Full strength MS medium was reported to be effective for the induction of sporophytes from the rhizomes after four weeks of inoculation. Maximum response (96%) with average of 6.2 shoots (2.72 cm length) was achieved on full strength of MS medium augmented with 0.5 mg/L BAP in culture initiation experiments. The cultures were further proliferated in clusters (79.0±0.37 shoots per explant) with stunted growth on half strength MS medium supplemented with 0.25 mg/L BAP after four weeks. These stunted shoots were elongated (5.30 cm long) on half MS medium devoid of growth hormones. Root induction and proliferation (3.0–4.0 cm long) were observed after 4th subculture of sporophytes on hormone-free half strength MS medium. The rooted plantlets were hardened in the fern house for 4-5 weeks and transferred to the field with 92% survival rate. There were no observable differences in between in vivo grown and in vitro propagated plantlets in the field.


2018 ◽  
Vol 24 (2) ◽  
pp. 87-94 ◽  
Author(s):  
Viviane Luiza Hunhoff ◽  
Lais Alves Lage ◽  
Ednamar Gabriela Palú ◽  
Willian Krause ◽  
Celice Alexandre Silva

Tissue culture is an alternative form of producing healthy, vigorous and regular plants on a large scale. The purpose of this study was to evaluate the most efficient culture medium for in vitro plantlet germination and development of three Orchidaceae species. Seeds disinfested of three species were dispersed in distilled water and dripped into basic Murashige and Skoog (MS) medium. The experimental design was completely randomized in a factorial 3 x 4 (three species x four culture media), with 5 replications. Four treatments were established: (1) full-strength MS medium, with the full nutrient concentration (MSØ), (2) full-strength MS medium plus 0.3% activated charcoal (MSØ ACh), (3) half- strength MS medium (½ MS) and (4) half- strength MS medium with 0.3 % activated charcoal (½ MS ACh). Germination was evaluated after 15, 20, 25, 30, and 60 days. The shoot height, leaf number and length, root number and length of plantlets of the three studied species were assessed. In A. variegata, 73% germinated after 60 days in ½ MS ACh medium. In the same period, 100% of E. viparum and S. gloriosa seeds germinated in MSØ ACh medium. The plant height, leaf number and length, root number and length were significantly higher for the species A. variegata and E. viviparum in MSØ ACh medium. The culture media ½ MS and MSØ with addition of activated charcoal favored in vitro germination for the three orchid species of this study.


Author(s):  
Ajay Bhardwaj ◽  
T. Pradeepkumar ◽  
C. Varun Roch

A micropropagation protocol for parthenocarpic gynoecious cucumber reduces the burden of producing the seeds for each generation and their maintenance in-vivo. Thus an experiment was conducted in order to regenerate the plants in-vitro to check their performance after micropropagation. The micropropagation resulted in maximum shoot initiation (100%) from seedling excised cotyledonary explants with half strength MS medium supplemented with 0.5 mg/l IAA and 2 mg/l BAP along with half strength MS medium supplemented with 0.25 mg/l IAA for rooting and from stem nodal explants with Full MS + 1.5 mg/l IAA + 2 mg/l BAP media whereas half strength MS media without any hormones resulted in rooting and in both cases there were in-vitro flowers and change in their sex expression while grown in in-vivo conditions. On an average 61.11 and 48.15 percent survival was recorded from the plants regenerated through cotyledonary explants and stem nodal explants respectively. Out of five survived plants from regenerated parthenocarpic genotype CS 131 three showed monoecious sex expression and two exhibited gynoecious (parthenocarpic) sex expression. Mixed response of sex expression was evident in the regenerated parthenocarpic and gynoecious genotypes.


Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 111
Author(s):  
Andrea Copetta ◽  
Miriam Bazzicalupo ◽  
Arianna Cassetti ◽  
Ilaria Marchioni ◽  
Carlo Mascarello ◽  
...  

Mertensia maritima is a commercially interesting herb with edible leaves and flowers, characterized by oyster flavor and taste. Plant propagation and traditional cultivation are challenging for this species. Therefore, the main purpose of the present study was to establish successful protocols aimed at ensuring oyster plant shoot propagation, rooting and in vivo acclimatization. Both micropropagation and rooting were tested, comparing the traditional in vitro solid substrate in jar vs. the liquid culture in a temporary immersion system (TIS) bioreactor (Plantform™). A Murashige and Skoog (MS) medium added with 4-µM thidiazuron (TDZ) and 1-µM α-naphthaleneacetic acid (NAA) was employed for micropropagation, while a half-strength MS medium supplemented with 4-µM indole−3-butyric acid (IBA) was used for rooting. Different acclimatization conditions in the greenhouse or in growth chamber were tested. Morphometric and microscopical analyses were performed on the oyster plant leaves at the propagation, rooting and acclimatization stages both in a jar and in a TIS. Micropropagation in a TIS allowed to obtain large shoots, while a great number of shoots was observed in the jar. M. maritima shoots rooted in TIS produced more developed roots, leaves with more developed waxy glands and well-formed stomata; moreover, the plants coming from the TIS showed the best acclimatization performances.


Sign in / Sign up

Export Citation Format

Share Document