scholarly journals Growing Food with Garbage: Effects of Six Waste Amendments on Soil and Vegetable Crops

HortScience ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 896-904 ◽  
Author(s):  
Rebecca J. Long ◽  
Rebecca N. Brown ◽  
José A. Amador

Using organic wastes as agricultural amendments is a productive alternative to disposal in landfills, providing nutrients for plant growth and carbon to build soil organic matter. Despite these benefits, a large fraction of organic waste is sent to landfills. Obstacles to the adoption of wastes as sources of plant nutrients include questions about harmful effects to crops or soils and the wastes’ ability to produce satisfactory yields. We compared six organic waste amendments with a mineral fertilizer control (CN) to determine effects on soil quality, soil fertility, crop quality, and crop yield in 2013 and 2014. Waste amendments were applied at a rate sufficient to supply 10,000 kg organic C/ha over two seasons, and mineral fertilizer was applied to control plots to provide 112 kg-N/ha/yr. The experiment was laid out in a randomized block design with four replicates and three crops: sweet corn (Zea mays L. cv. Applause, Brocade, and Montauk), butternut squash (Cucurbita moschata Duchesne cv. JWS 6823), and potatoes (Solanum tuberosum L. cv. Eva). Amendment with biosolids/yard waste cocompost (BS), dehydrated restaurant food waste (FW), gelatin manufacturing waste (GW), multisource compost (MS), paper fiber/chicken manure blend (PF), and yard waste compost (YW) did not have a negative impact on soil moisture, bulk density, electrical conductivity (EC), or the concentration of heavy metals in soil or plant tissue. Our results indicate potential uses for waste amendments including significantly raising soil pH (MS) and increasing soil organic matter [OM (YW and BS)]. The carbon-to-nitrogen ratio (C:N) of waste amendments was not a reliable predictor of soil inorganic N levels, and only some wastes increased potentially mineralizable nitrogen (PMN) levels relative to the control. Plots amended with BS, FW, and GW produced yields of sweet corn, butternut squash, and potatoes comparable with the control, whereas plots amended with YW, PF, and MS produced lower yields of sweet corn, squash, or both, although yields for potatoes were comparable with the control. In addition, the marketability of potatoes from PF plots was significantly better than that of the control in 2014. None of the wastes evaluated in this study had negative impacts on soil properties, some provided benefits to soil quality, and all produced comparable yields for at least one crop. Our results suggest that all six wastes have potential to be used as sources of plant nutrients.

2020 ◽  
Author(s):  
Jerzy Lipiec ◽  
Boguslaw Usowicz ◽  
Jerzy Klopotek ◽  
Marcin Turski ◽  
Magdalena Frac

<p>The aim of this study was to evaluate the effects of long-term application of exogenous organic matter on soil organic matter and water storage. Addition of organic matter is of importance in sandy soils that are in general poor in organic matter, acidic, conducive to drought and used in agricultural production throughout the world. In this study the sandy podzol (63-74% sand) was amended with chicken manure or waste spent mushroom substrate through more than 20 years. Soil organic matter content, water retention curves, acidity and structural stability were determined at three depths in the top 60 cm in organic amended and control plots. Enrichment of the soil with chicken manure and spent mushroom substrate caused increase in soil organic matter content in the top 0-20 cm from 1.34 to 3.50% and from 0.86 to 4.71%, respectively. Corresponding increases in field water capacity were from 13.6 to 31.8 m<sup>3</sup> m<sup>−3</sup> and from 17.7 to 27.2 m<sup>3</sup> m<sup>−3</sup>. Both amendments improved soil structure, reaction and nutrient status. In general, these positive effects were greater in chicken manure than spent mushroom substrate amended soil and less pronounced at depths 20-40 cm and 40-60 cm compared to upper soil. Increase in the field water capacity and water storage capacity made the soils amended with  organic matter more drought resistant. Our findings provide valuable insights the spent mushroom substrate left after growing the mushrooms and chicken manure are environmentally friendly and economical viable soil management practices to increase soil quality and crop productivity.</p><p> </p><p> Acknowledgements</p><p>The work was partially funded by the HORIZON 2020, European Commission, Programme: H2020-SFS-4-2014: Soil quality and function, project No. 635750, Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience (iSQAPER, 2015–2020).</p>


2018 ◽  
Vol 10 (9) ◽  
pp. 284
Author(s):  
Ésio de Castro Paes ◽  
Fabiane Pereira Machado Dias ◽  
Iara Oliveira Fernandes ◽  
Elisângela Gonçalves Pereira ◽  
Elton da Silva Leite ◽  
...  

The objective of this study was to evaluate the soil organic carbon fractions and the carbon management index (CMI) in a cohesive oxisol under different uses. Conventional cassava planting (CC), pasture (PP), and 7- and 12-year agroforestry systems (AF7 and AF12, respectively), were tested against secondary forest (SF). Soil samples of these areas were physically fractionated in order to determine total organic matter (TOC) as well as the labile- (LOC) and non-labile (NOC) fractions of the soil organic matter, as well as carbon management index (CMI). Total organic C ranged from 14.17 to 27.20 g kg-1 of soil, showing no differences in the surface layer among the land uses as compared to the secondary forest. No differences were found in the surface layer for LOC as well, except for the AF12 where LOC was higher. This condition accounts for higher microbial activity and nutrient cycling in the soil. This system also showed higher CMI values, pointing to a better response of soil quality under long-term agroforestry system. This system improved soil organic matter, regardless of the depth. On the other hand, conventional cassava and planted pasture systems reduced carbon in soil. In conclusion, the agroforestry system is the best choice of farmers, when they seek for better soil quality.


2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 345 ◽  
Author(s):  
G. D. Schwenke ◽  
D. R. Mulligan ◽  
L. C. Bell

At Weipa, in Queensland, Australia, sown tree and shrub species sometimes fail to establish on bauxite-mined land, possibly because surface-soil organic matter declines during soil stripping and replacement. We devised 2 field experiments to investigate the links between soil rehabilitation operations, organic matter decline, and revegetation failure. Experiment 1 compared two routinely practiced operations, dual-strip (DS) and stockpile soil, with double-pass (DP), an alternative method, and subsoil only, an occasional result of the DS operation. Other treatments included variations in stripping-time, ripping-time, fertiliser rate, and cultivation. Dilution of topsoil with subsoil, low-grade bauxite, and ironstone accounted for the 46% decline of surface-soil (0–10 cm) organic C in DS compared with pre-strip soil. In contrast, organic C in the surface-soil (0–10 cm) of DP plots (25.0 t/ha) closely resembled the pre-strip area (28.6 t/ha). However, profile (0–60 cm) organic C did not differ between DS (91.5 t/ha), DP (107 t/ha), and pre-strip soil (89.9 t/ha). Eighteen months after plots were sown with native vegetation, surface-soil (0–10 cm) organic C had declined by an average of 9% across all plots. In Experiment 2, we measured the potential for post-rehabilitation decline of organic matter in hand-stripped and replaced soil columns that simulated the DS operation. Soils were incubated in situ without organic inputs. After 1 year’s incubation, organic C had declined by up to 26% and microbial biomass C by up to 61%. The difference in organic C decline between vegetated replaced soils (Expt 1) and bare replaced soils (Expt 2) showed that organic inputs affect levels of organic matter more than soil disturbance. Where topsoil was replaced at the top of the profile (DP) and not ploughed, inputs from volunteer native grasses balanced oxidation losses and organic C levels did not decline.


1999 ◽  
Vol 79 (1) ◽  
pp. 103-109 ◽  
Author(s):  
F. Courchesne ◽  
J.-F. Laberge ◽  
A. Dufresne

The role of soil organic matter (OM) on SO4 retention was investigated by comparing OM content, SO4 retention, and the distribution of Fe, Al and Si compounds in OM-poor (Grands-Jardins, PGJ) and OM-rich (Hermine, HER) Podzols from Québec, Canada. At both sites, four pedons were sampled by horizon; soil pH in H2O, organic C, phosphate-extractable SO4 and, sodium pyrophosphate, acid ammonium oxalate and dithionite-citrate-bicarbonate (DCB) extractable Fe, Al and Si were measured for each mineral horizon. The mineralogy of the clay (<2 µm) and fine silt (2–20 µm) fractions of selected horizons was determined by X-ray diffraction (XRD) and infrared spectroscopy (IR). Weighted mean organic C and pyrophosphate extractable Fe and Al contents were significantly higher in the HER than in the PGJ sola, while the PGJ soils were richer in amorphous inorganic Al. No trends were observed for inorganic Fe compounds. Chemical dissolution and IR allowed the identification of short-range ordered aluminosilicates, probably allophane, in the OM-poor and slightly acidic to neutral PGJ soils. These materials were absent from the OM-rich and acidic HER soils. Phosphate extractions showed that the weighted mean native SO4 content was five times higher in the PGJ than in the HER soil. Finally, native SO4 was strongly related to inorganic Fe, Al and Si (associated with allophane) at PGJ but only to inorganic Fe at HER. These results indicate that OM indirectly affects SO4 sorption through the influence organic substances exerts on the nature and distribution of pedogenic Fe, Al and Si compounds, such as allophane, in Podzolic profiles. Key words: Organic matter, sulfate, imogolite, allophane, silica, Podzol


2001 ◽  
Vol 81 (3) ◽  
pp. 349-355 ◽  
Author(s):  
D. F. E. McArthur ◽  
P M Huang ◽  
L M Kozak

Research has suggested a link between the bioavailability of soil Cd and total soil organic matter. However, some research suggested a negative relationship between total soil organic matter and bioavailable soil Cd while other research suggested a positive relationship. This study investigated the relationship between soil Cd and both the quantity and quality of soil organic matter as influenced by long-term cultivation. Two Orthic Chernozemic surface soil samples, one from a virgin prairie and the other from an adjacent cultivated prairie, were collected from each of 12 different sites throughout southern Saskatchewan, Canada. The samples were analyzed for total organic C, total Cd, Cd availability index (CAI), and pH. The nature of the soil organic matter was investigated with 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy (13C CPMAS NMR). The total soil Cd, CAI, and total soil organic C of the cultivated soils were significantly lower than those of the virgin soils whereas the opposite trend was observed for the soil pH and the aromaticity of the organic C. The reduced CAI in the cultivated soils was related to the increase in both the soil pH and the aromaticity of the organic C. No relationship was found between the CAI and the soil organic C content, but a significant positive correlation was found between total organic C and total Cd in both the virgin and the cultivated soils. As well, a significant positive correlation was found between the fraction of total Cd removed from the soil after long-term cultivation and the corresponding fraction of organic C removed. Key words: Long-term cultivation, soil organic matter, 13C CPMAS NMR, cadmium


2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


2019 ◽  
Vol 41.3 ◽  
pp. 7055-7067
Author(s):  
Acka Jacques Alain KOTAIX ◽  
Téhua Kouassi Pascal ANGUI ◽  
Sidiky BAKAYOKO ◽  
Koffi Emmanuel KASSIN ◽  
Kouadio Emmanuel N’GORAN ◽  
...  

1 RESUME Une étude sur la fertilisation minérale et organique liquide a été conduite sur la tomate en petite saison de pluie au Sud et au Centre-Ouest de la Côte d’Ivoire sur deux années, afin d’améliorer la fertilité du sol et le rendement de la tomate. De manière spécifique, il s’agissait d’évaluer les effets des traitements de quatre doses d’engrais organique liquide associées ou non à l’engrais minéral sur la teneur du sol en matière organique, le rapport C/N et le rendement. Le dispositif expérimental était un split-plot avec quatre répétitions ayant pour facteur principal, l’engrais minéral et le facteur secondaire, l’engrais organique à quatre doses (Lha-1) : C0 = 0 (témoin), C1 = 2,5; C2 = 3,75 et C3 = 5. Les résultats ont montré que le traitement T10 (50 % engrais minéral + 3,75 Lha-1 engrais organique) a amélioré la teneur du sol en matière organique, et le rendement. Cependant, le traitement avec 3,75 Lha-1 d’engrais organique utilisée seule a amélioré le rapport C/N du sol. Effects of liquid organic (NPK 5-9-18) and mineral (NPK 12-11-18) fertilizers on soil organic matter of and tomato yield in the South and the Mid-west of Ivory Coast ABSTRACT A study on the mineral and liquid organics fertilizations was conducted on tomato during short rainy season in South and Central West regions of Ivory Coast over two years to improve soil fertility and tomato yield. Specifically, the treatment effects of four doses of organic fertilizer, associated or not with the mineral fertilizer on the content of the soil organic matter, the C/N ratio and the yield. The experimental design was split-plot, with four repetitions having as principal factor, the mineral fertilizer and the secondary factor, the organic fertilizer in four doses (L ha-1): C0 = 0 (control); C1 = 2.5; C2 = 3.75 and C3 = 5. The results showed that the treatment T10 (50 % mineral fertilizer + 3.75 Lha-1 of the organic fertilizer), better improved the content of the soil organic matter and the yield. However, the treatment with 3.75 L ha-1 of organic fertilizer used alone has increased advantage the report C/N of the ground.


Sign in / Sign up

Export Citation Format

Share Document