scholarly journals Salt Tolerance of Sego SupremeTM Plants

HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 2056-2062 ◽  
Author(s):  
Asmita Paudel ◽  
Ji Jhong Chen ◽  
Youping Sun ◽  
Yuxiang Wang ◽  
Richard Anderson

Sego SupremeTM is a designated plant breeding and introduction program at the Utah State University Botanical Center and the Center for Water Efficient Landscaping. This plant selection program introduces native and adapted plants to the arid West for aesthetic landscaping and water conservation. The plants are evaluated for characteristics such as color, flowering, ease of propagation, market demand, disease/pest resistance, and drought tolerance. However, salt tolerance has not been considered during the evaluation processes. Four Sego SupremeTM plants [Aquilegia barnebyi (oil shale columbine), Clematis fruticosa (Mongolian gold clematis), Epilobium septentrionale (northern willowherb), and Tetraneuris acaulis var. arizonica (Arizona four-nerve daisy)] were evaluated for salt tolerance in a greenhouse. Uniform plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.25 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. After 8 weeks of irrigation, A. barnebyi irrigated with saline solution at an EC of 5.0 dS·m−1 had slight foliar salt damage with an average visual score of 3.7 (0 = dead; 5 = excellent), and more than 50% of the plants were dead when irrigated with saline solutions at an EC of 7.5 and 10.0 dS·m−1. However, C. fruticosa, E. septentrionale, and T. acaulis had no or minimal foliar salt damage with visual scores of 4.2, 4.1, and 4.3, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. As the salinity levels of treatment solutions increased, plant height, leaf area, and shoot dry weight of C. fruticosa and T. acaulis decreased linearly; plant height of A. barnebyi and E. septentrionale also declined linearly, but their leaf area and shoot dry weight decreased quadratically. Compared with the control, the shoot dry weights of A. barnebyi, C. fruticosa, E. septentrionale, and T. acaulis decreased by 71.3%, 56.3%, 69.7%, and 48.1%, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. Aquilegia barnebyi and C. fruticosa did not bloom during the experiment at all treatments. Elevated salinity reduced the number of flowers in E. septentrionale and T. acaulis. Elevated salinity also reduced the number of shoots in all four species. Among the four species, sodium (Na+) and chloride (Cl–) concentration increased the most in A. barnebyi by 53 and 48 times, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. In this study, C. fruticosa and T. acaulis had minimal foliar salt damage and less reduction in shoot dry weight, indicating that they are more tolerant to salinity. Epilobium septentrionale was moderately tolerant to saline solution irrigation with less foliar damage, although it had more reduction in shoot dry weight. On the other hand, A. barnebyi was the least tolerant with severe foliar damage, more reduction in shoot dry weight, and a greater concentration of Na+ and Cl–.

2019 ◽  
Vol 29 (3) ◽  
pp. 367-373
Author(s):  
Yuxiang Wang ◽  
Liqin Li ◽  
Youping Sun ◽  
Xin Dai

Spirea (Spiraea sp.) plants are commonly used in landscapes in Utah and the intermountain western United States. The relative salt tolerance of seven japanese spirea (Spiraea japonica) cultivars (Galen, Minspi, NCSX1, NCSX2, SMNSJMFP, Tracy, and Yan) were evaluated in a greenhouse. Plants were irrigated with a nutrient solution with an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions with an EC of 3.0 or 6.0 dS·m−1 once per week for 8 weeks. At 8 weeks after the initiation of treatment, all japanese spirea cultivars irrigated with saline solution with an EC of 3.0 dS·m−1 still exhibited good or excellent visual quality, with all plants having visual scores of 4 or 5 (0 = dead, 1 = severe foliar salt damage, 2 = moderate foliar salt damage, 3 = slight foliar salt damage, 4 = minimal foliar salt damage, 5 = excellent), except for Tracy and Yan, with only 29% and 64%, respectively, of plants with visual scores less than 3. When irrigated with saline solution with an EC of 6.0 dS·m−1, both ‘Tracy’ and ‘Yan’ plants died, and 75% of ‘NCSX2’ plants died. ‘Minspi’ showed severe foliar salt damage, with 32% of plants having a visual score of 1; 25% of plants died. ‘Galen’ and ‘NCSX1’ had slight-to-moderate foliar salt damage, with 25% and 21%, respectively, of plants with visual scores of 2 or less. However, 64% of ‘SMNSJMFP’ plants had good or excellent visual quality, with visual scores more than 4. Saline irrigation water with an EC of 3.0 dS·m−1 decreased the shoot dry weight of ‘Galen’, ‘Minspi’, ‘SMNSJMFP’, and ‘Yan’ by 27%, 22%, 28%, and 35%, respectively, compared with that of the control. All japanese spirea cultivars had 35% to 56% lower shoot dry weight than the control when they were irrigated with saline irrigation water with an EC of 6.0 dS·m−1. The japanese spirea were moderately sensitive to the salinity levels in this experiment. ‘Galen’ and ‘SMNSJMFP’ japanese spirea exhibited less foliar salt damage and reductions in shoot dry weight and were relatively more tolerant to the increased salinity levels tested in this study than the remaining five cultivars (Minspi, NCSX1, NCSX2, Tracy, and Yan).


HortScience ◽  
2017 ◽  
Vol 52 (12) ◽  
pp. 1810-1815 ◽  
Author(s):  
Lifei Chen ◽  
Youping Sun ◽  
Genhua Niu ◽  
Qiang Liu ◽  
James Altland

Relative salt tolerance of eight Berberis thunbergii (japanese barberry) cultivars (B. thunbergii ‘Celeste’, ‘Kasia’, ‘Maria’, ‘Mini’, and ‘Talago’; B. thunbergii var. atropurpurea ‘Concorde’, ‘Helmond Pillar’, and ‘Rose Glow’) was evaluated in a greenhouse experiment. Plants were irrigated with nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at an EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) once a week for 8 weeks. At 4 weeks after treatment, all barberry cultivars in EC 5 had minimal foliar damage with visual scores of 4 or greater (visual score 0: dead, 5: excellent). At 8 weeks after treatment, in EC 5, ‘Helmond Pillar’, ‘Maria’, ‘Mini’, and ‘Rose Glow’ plants exhibited slight foliar salt damage with an average visual score of 3.5, whereas ‘Celeste’, ‘Concorde’, ‘Kasia’, and ‘Talago’ had minimal foliar salt damage with an averaged visual score of 4.4. However, most barberry plants in EC 10 exhibited severe foliar salt damage 4 weeks after treatment with the exception of ‘Concorde’ and were dead 8 weeks after treatment. Compared with control, at the end of the experiment (8 weeks of treatments), shoot dry weight (DW) of ‘Celeste’, ‘Helmond Pillar’, ‘Maria’, and ‘Rose Glow’ in EC 5 was reduced by 47%, 47%, 50%, and 42%, respectively, whereas shoot DW of ‘Concorde’, ‘Kasia’, ‘Mini’, and ‘Talago’ in EC 5 did not change. In EC 10, shoot DW of ‘Celeste’, ‘Concorde’, ‘Kasia’, and ‘Talago’ was reduced by 75%, 35%, 55%, and 46%, respectively. The averaged sodium (Na) concentration of all barberry cultivars in EC 5 and EC 10 was 34 and 87 times, respectively, higher than the control, whereas leaf chloride (Cl) concentration of all barberry cultivars in EC 5 and EC 10 was 14–60 and 29–106 times, respectively, higher than the control. Growth, visual quality, and performance index (PI) were all negatively correlated with leaf Na and Cl content in all cultivars, suggesting that excessive Na and Cl accumulation in the leaf tissue led to growth reduction, salt damage, and death. In summary, ‘Concorde’, ‘Kasia’, and ‘Talago’ were relatively salt tolerant; ‘Helmond Pillar’, ‘Maria’, ‘Mini’, and ‘Rose Glow’ were relatively salt sensitive; and ‘Celeste’ was in between the two groups. Generally, barberry plants had moderate salt tolerance and can be irrigated with marginal water at an EC of 5 dS·m−1 or lower with slight foliar damage.


HortScience ◽  
2012 ◽  
Vol 47 (11) ◽  
pp. 1653-1657 ◽  
Author(s):  
Genhua Niu ◽  
Pedro Osuna ◽  
Youping Sun ◽  
Denise S. Rodriguez

Ornamental chile peppers are popular bedding plants. As high-quality water supply becomes limited in many parts of the world, alternative waters such as municipal reclaimed water is encouraged to be used for landscape irrigation. The purpose of this study was to assess the relative salt tolerance of 10 cultivars of ornamental chile peppers by irrigating the mature plants with saline solutions and germinating seeds in saline substrate in a greenhouse. In the mature plant salt tolerance experiment, plants were irrigated with nutrient solution (no addition of salts, control) or saline solution at electrical conductance (EC) of 4.1 dS·m−1 or 8.1 dS·m−1 for 8 weeks. Plants in the EC of 4.1 dS·m−1 treatment did not have any foliar salt damage regardless of cultivar. At EC of 8.1 dS·m−1, ‘NuMex Memorial Day’ had the most severe foliar salt damage, whereas ‘NuMex April Fool’s Day’, ‘NuMex Cinco de Mayo’, ‘NuMex Thanksgiving’, and ‘NuMex Twilight’ had little or no foliar damage. Shoot dry weight (DW) reduction at EC of 8.1 dS·m−1 compared with control was smallest in ‘NuMex Thanksgiving’ (15%), whereas ‘NuMex Memorial Day’ had the greatest reduction of 74% followed by ‘NuMex Christmas’ of 61%. The highest shoot DW reduction in ‘NuMex Memorial Day’ coincided with lowest visual score, indicating that this cultivar was the least tolerant to salinity. The leaf Na+ and Cl− concentrations increased dramatically with increasing EC of the irrigation water in all cultivars. The highest Na+ concentration of 10.9 mg·g−1 DW at EC of 8.1 dS·m−1 was observed in ‘NuMex Christmas’. The highest Cl− concentration at EC of 8.1 dS·m−1 was found in ‘NuMex Memorial Day’ with 64.8 mg·g−1 DW, which was four times higher than the control. In the seedling emergence experiment, seeds of the 10 cultivars were germinated in substrate either moistened with reverse osmosis water (EC ≈0) or saline solution at EC of 17.1 dS·m−1. ‘NuMex Christmas’ and ‘NuMex Memorial Day’ had the lowest relative seedling emergence index, indicating that these two cultivars were the least tolerant to salinity during the seedling emergence stage. ‘NuMex Thanksgiving’ and ‘NuMex Cinco de Mayo’ had the highest relative seedling emergence index. Combining the results from both experiments, we concluded that ‘NuMex Cinco de Mayo’ and ‘NuMex Thanksgiving’ were the most tolerant cultivars, whereas ‘NuMex Christmas’ and ‘NuMex Memorial Day’ were the least tolerant ones.


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 888-895
Author(s):  
Youping Sun ◽  
Liqin Li ◽  
Yuxiang Wang ◽  
Xin Dai

Spirea (Spiraea sp.) plants are popular landscape plants in Utah and the Intermountain West United States. Spiraea betulifolia, S. japonica, S. media, S. nipponica, and S. thunbergii were evaluated for salinity tolerance in a greenhouse experiment. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution at an EC of 3.0 or 6.0 dS·m−1 for 8 weeks. At the end of the experiment, all spirea plants survived and retained good visual quality, with average visual scores greater than 4 (0 = dead, 5 = excellent) when irrigated with saline solution at an EC of 3.0 dS·m−1, with the exception of S. thunbergii, which showed slight foliar salt damage and an average visual score of 3.8. When irrigated with saline solution at an EC of 6.0 dS·m−1, all S. thunbergii plants died, S. media exhibited severe foliar salt damage and an average visual score of 1.5, and S. betulifolia, S. japonica, and S. nipponica displayed slight-to-moderate foliar salt damage and average visual scores greater than 3. Regardless of spirea species, shoot dry weight decreased by 20% and 48% when irrigated with saline solution at ECs of 3.0 and 6.0 dS·m−1, respectively, compared with the control. Saline solution at an EC of 3.0 dS·m−1 did not affect net photosynthesis (Pn) of all spirea species except S. nipponica, but saline solution at an EC of 6.0 dS·m−1 decreased the Pn of all species by 36% to 60%. There were 37, 7, 36, 21, and 104 times more sodium (Na+) concentrations in leaf and 29, 28, 28, 13, and 69 times more chloride (Cl−) concentrations in leaf than in the control when S. betulifolia, S. japonica, S. media, S. nipponica, and S. thunbergii were irrigated with saline solution at an EC of 6.0 dS·m−1. Correlation analyses indicated that foliar salt damage and reduced plant growth and photosynthesis were induced mainly by Cl− ions accumulated in the spirea leaves. S. thunbergii was the most sensitive species; it had high mortality and low visual quality at both salinity levels. Spiraea japonica, S. nipponica, and S. betulifolia were relatively more tolerant and had good visual quality at elevated salinity compared with S. media and S. thunbergii. These research results are valuable for growers and landscape professionals during plant selection for nursery production using low-quality water and landscapes in salt-prone areas.


Horticulturae ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 54 ◽  
Author(s):  
Genhua Niu ◽  
Youping Sun ◽  
Triston Hooks ◽  
James Altland ◽  
Haijie Dou ◽  
...  

A greenhouse study was conducted to assess the relative salt tolerance of 11 cultivars of hydrangea: Hydrangea macrophylla ‘Ayesha’, ‘Emotion’, ‘Mathilda Gutges’, ‘Merritt’s Supreme’ and ‘Passion’; H. paniculata ‘Interhydia’ and ‘Bulk’; H. quercifolia ‘Snowflake’; H. serrata ‘Preciosa’; and H. serrata × macrophylla ‘Sabrina’ and ‘Selina’. Plants were treated with a nutrient solution at an electrical conductivity (EC) of 1.0 dS·m−1, and nutrient solution-based saline solutions at an EC of 5.0 dS·m−1 (EC 5) or 10 dS·m−1 (EC 10). The study was repeated in time (Experiments 1 and 2). In both experiments, by the fourth week after treatment, ‘Bulk’ plants in EC 10 exhibited severe salt damage with most of them dead. ‘Interhydia’ was also sensitive, showing severe salt damage in EC 10 with a high mortality rate by the end of the experiment. The leaf area and total shoot dry weight (DW) of all cultivars in EC 5 and EC 10 treatments were significantly reduced compared to the control. Leaf sodium (Na+) and chloride (Cl−) concentrations were negatively correlated with visual quality, leaf area and shoot DW. The salt-sensitive cultivars ‘Bulk’, ‘Interhydia’ and ‘Snowflake’ had inherently low leaf Na+ and Cl− concentrations in both control and salt-treated plants compared to other cultivars. Salt tolerance varied among species and cultivars within H. macrophylla. Among the 11 cultivars, H. macrophylla ‘Ayesha’ and two hybrids, ‘Sabrina’ and ‘Selina’, were relatively salt-tolerant. H. macrophylla ‘Merritt’s Supreme’ and ‘Mathilda’ were moderately tolerant. H. paniculata ‘Bulk’ was the most sensitive, followed by H. paniculata ‘Interhydia’, and then by H. serrata ‘Preciosa’ and H. macrophylla ‘Passion’, as evidenced by high mortality and severe salt damage symptoms. H. quercifolia ‘Snowflake’ and H. macrophylla ‘Emotion’ were moderately salt-sensitive.


Author(s):  
Ogbuehi HC ◽  
Ibe PK

A pot experiment was conducted under rainfed condition to study the effect of water hyacinth compost on the morpho-physiological parameters of soybean (Glycine max L.) at the Teaching and Research Farm of Faculty of Agriculture and Veterinary Medicine, Imo State University, Owerri. The treatments were control (T1) 100g (T2), 150g (T3) and 200g (T4) of water hyacinth compost and replicated four times. The treatments were arranged in Complete Randomized Design (CRD). The parameters measured were plant height, number of leaves, leaf area (cm2), leaf area index, relative growth rate (RGR), Net assimilation rate (NAR), shoot dry weight(g), yield and yield components (Number of pods, pods weight, 100 seed weight). The results obtained indicated that T3 significantly produced highest plant height (57.6cm) compare to control. While it was observed that T4 (200g) significantly produced the highest number of leaves (233.25), leaf area (631.80cm2), shoot dry weight (15.445g), number of pods (129.75), pod weights (25.38g) seed weight (7.23g) and yield (0.72kg/ha) relative to control and other treatment levels. Root parameters were also significantly improved by the rates of water hyacinth application compared to control. It will be worthy to note that there was no nodulation perhaps that was why the yield was poor. The results showed that soybean growth can effectively be improved with incorporation of water hyacinth into soil.


2007 ◽  
Vol 25 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Genhua Niu ◽  
Denise S. Rodriguez ◽  
Yin-Tung Wang

Abstract A study was conducted to characterize the response of Gaillardia aristata Pursh to salinity (0.8, 2.0 or 4.0 dS/m) and growing media: 100% perlite (Perlite), 100% Sunshine Mix No. 4 (Mix), 1 to 1 (by vol) perlite and Sunshine Mix No. 4 (Perlite Mix), or 1 to 1 Sunshine Mix No. 4 and composted mulch (Mix Mulch). Type of medium did not influence shoot dry weight (DW). However, root to shoot DW ratio was highest for plants grown in Perlite. Shoot DW of plants irrigated with tap water (0.8 dS/m) was higher compared to those irrigated with saline solution at 2.0 or 4.0 dS/m, except for those grown in Mix. Salinity did not alter the root to shoot DW ratio. In general, elevated salinity led to relatively short plants. Plants were taller when grown in Perlite or Mix Mulch with fewer lateral shoots compared to plants grown in Mix and Perlite Mix. Flower bud abortion occurred in plants grown in Mix or Perlite Mix, while this phenomenon was not observed in plants grown in Perlite or Mix Mulch. Overall, plants performed better in Perlite and Mix Mulch than Mix and Perlite Mix.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1071C-1071
Author(s):  
Genhua Niu ◽  
Denise S. Rodriguez

Gaillardia aristata Foug. is a hardy, drought-tolerant perennial found throughout much of the United States. Little information exists on the salt tolerance of this plant when grown in various growing media. A study was conducted to characterize the response of G. aristata to three salinity levels (0.8, 2.0, or 4.0 dS/m) and four growing media: 1) 100% perlite; 2) 1 perlite: 1 Sunshine mix No. 4 (v/v); 3) 100% Sunshine mix No. 4; or 4) 1 Sunshine mix No. 4: 1 composted mulch (v/v). The type of medium influenced the dry weight of roots but not shoots, while salinity significantly influenced the dry weight of both shoots and roots. The dry weight of shoots was higher in plants irrigated with tap water (0.8 dS/m) compared to those irrigated with saline solution at 2.0 or 4.0 dS/m except for those grown in 100% Sunshine mix. The ratio of root to shoot dry weight was not influenced by salinity, but was highest in the plants grown in 100% perlite. Both medium and salinity affected plant height. Elevated salinity reduced plant height. Plants were taller when grown in 100% perlite and in 1 Sunshine mix: 1 composted mulch. However, plants had fewer lateral shoots when grown in 100% perlite or 1 Sunshine mix: 1 composted mulch. Some of the flower buds aborted when grown in 100% Sunshine mix or 1 perlite: 1 Sunshine mix compared to none in plants grown in 100% perlite or 1 Sunshine mix: 1 composted mulch. These results indicate that growth and morphology of G. aristata were affected by not only salinity, but also the type of medium.


2013 ◽  
Vol 35 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Lizandro Ciciliano Tavares ◽  
Cassyo de Araújo Rufino ◽  
André Pich Brunes ◽  
Felipe Freire Friedrich ◽  
Antonio Carlos Souza Albuquerque Barros ◽  
...  

The objective of this study was to evaluate the physiological performance of wheat seeds coated with micronutrients. The treatments were combinations of two products based on micronutrients, product "A": 780.0 g.L-1 of zinc and product "B": 182.4, 7.6 and 45.6 g.L-1 of zinc, boron and molybdenum, respectively, with five dosages of the products: 0, 1, 2, 3 and 4 mL. kg-1 seed, totaling 10 treatments with four replications. Physiological quality of the treated seed was evaluated from germination and vigor tests and the early plant growth from determinations of shoot dry weight, plant height and leaf area at 10, 20 and 30 days after emergence (DAE), as well as the rate of crop growth, relative and net assimilation. Seed yield and physiological quality were determined after harvest. It was concluded that coating wheat seeds with the product "A" , based on zinc and "B", consisting of zinc, boron and molybdenum, respectively, up to a dosage of 4 mL.kg-1 seed, did not adversely affect the physiological quality of the treated seeds or those produced. Both products tested resulted in increases in leaf area, plant height and shoot dry weight up to 30 DAE, as well as a higher seed yield.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 689d-689
Author(s):  
P.R. Knight ◽  
J.R. Harris ◽  
J.K. Fanelli

Two-year-old, bareroot, Corylus colurna seedlings were grown in 7.5-L containers from 15 Mar. to 23 June 1995. Plants were grown in a glasshouse using pine bark media. Temperatures were maintained at 30/20°C. Plants received no fertilization or Osmocote 18–6–12 top-dressed at 14 or 28 g/container. Additionally, plants were pruned to remove 0%, 25%, or 50% of the root system based on root length. Height, diameter, branch number, leaf area, and root and shoot dry weight increased linearly as rate of fertilization increased. Percent embolism was not influenced by rate of fertilization. Plant height, branch number, leaf area, and root and shoot dry weight were not influenced by rate of root pruning. Plant diameter increased linearly as rate of root pruning decreased. Percent embolism increased linearly as rate of root pruning increased.


Sign in / Sign up

Export Citation Format

Share Document