scholarly journals Rootstock Affects Scion Nutrition and Fruit Quality during Establishment and Early Production of ‘Honeycrisp’ Apple

HortScience ◽  
2021 ◽  
Vol 56 (2) ◽  
pp. 261-269
Author(s):  
Nadia A. Valverdi ◽  
Lee Kalcsits

‘Honeycrisp’ apple is susceptible to bitter pit, which is associated with fruit mineral nutrient composition. Rootstock genotypes can affect nutrient acquisition, distribution, and fruit yields, which all affect fruit nutrient composition and bitter pit susceptibility. However, the changes of these traits among different rootstock genotypes in response to abiotic stress under semiarid conditions are relatively unknown. The objective of this study was to evaluate the influence of different rootstocks and irrigation on nutrient uptake and partitioning with ‘Honeycrisp’ apple grown in an irrigated, semiarid environment. ‘Honeycrisp’ apple trees were grafted on four different rootstocks, Geneva 41 (‘G.41’), Geneva 890 (‘G.890’), M.9-T337 (‘M.9’), and Budagovsky 9 (‘B.9’), and these were planted at high density (3000 trees/ha). Irrigation was applied as either a water-limited treatment where volumetric soil water content was maintained near 50% field capacity (FC) and a well-watered control where soil water content was maintained near 100% FC. ‘G.890’, the most vigorous rootstock, had lower nitrogen and higher potassium content in leaves, while ‘B.9’, the least vigorous rootstock, had lower potassium and higher nitrogen content. Rootstock genotype did not affect calcium uptake. Interestingly, water-limited conditions increased the nutrient content in root and stems but not in leaves. Water-limited trees partitioned more nitrogen and calcium to roots, while well-watered trees in the control partitioned more nutrients to the stems. Fruit size was the largest for ‘G.890’ and smallest for ‘B.9’. Both ‘G.41’ and ‘G.890’ had higher bitter pit incidence, which was associated with higher potassium content in leaves and fruit. These results suggest that rootstock-induced vigor and irrigation can both contribute to nutrient imbalances in leaves and fruit that could affect the development of physiological disorders in ‘Honeycrisp’ apple.

2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
MUHAMMAD ASLAM ALI ◽  
SANJIT CHANDRA BARMAN ◽  
MD. ASHRAFUL ISLAM KHAN ◽  
MD. BADIUZZAMAN KHAN ◽  
HAFSA JAHAN HIYA

Climate change and water scarcity may badly affect existing rice production system in Bangladesh. With a view to sustain rice productivity and mitigate yield scaled CH4 emission in the changing climatic conditions, a pot experiment was conducted under different soil water contents, biochar and silicate amendments with inorganic fertilization (NPKS). In this regard, 12 treatments combinations of biochar, silicate and NPKS fertilizer along with continuous standing water (CSW), soil saturation water content and field capacity (100% and 50%) moisture levels were arranged into rice planted potted soils. Gas samples were collected from rice planted pots through Closed Chamber technique and analyzed by Gas Chromatograph. This study revealed that seasonal CH4 emissions were suppressed through integrated biochar and silicate amendments with NPKS fertilizer (50–75% of the recommended doze), while increased rice yield significantly at different soil water contents. Biochar and silicate amendments with NPKS fertilizer (50% of the recommended doze) increased rice grain yield by 10.9%, 18.1%, 13.0% and 14.2%, while decreased seasonal CH4 emissions by 22.8%, 20.9%, 23.3% and 24.3% at continuous standing water level (CSW) (T9), at saturated soil water content (T10), at 100% field capacity soil water content (T11) and at 50% field capacity soil water content (T12), respectively. Soil porosity, soil redox status, SOC and free iron oxide contents were improved with biochar and silicate amendments. Furthermore, rice root oxidation activity (ROA) was found more dominant in water stress condition compared to flooded and saturated soil water contents, which ultimately reduced seasonal CH4 emissions as well as yield scaled CH4 emission. Conclusively, soil amendments with biochar and silicate fertilizer may be a rational practice to reduce the demand for inorganic fertilization and mitigate CH4 emissions during rice cultivation under water stress drought conditions.


2018 ◽  
Vol 10 (6) ◽  
pp. 97-105 ◽  
Author(s):  
Morgan Amanda ◽  
Joseph Pearson Brian ◽  
Shad Ali Gul ◽  
Moore Kimberly ◽  
Osborne Lance

2002 ◽  
Vol 82 (4) ◽  
pp. 855-859 ◽  
Author(s):  
M. L. Leblanc ◽  
D. C. Cloutier ◽  
C. Hamel

A 2-year field study was conducted in corn to determine the influence of rainfall, irrigation and soil water content on common lambsquarters and barnyardgrass emergence. Rainfall or irrigation had no influence on the final weed density and little on the pattern of weed emergence because the soil water content was at or greater than field capacity during the main weed emergence period. Irrigation may hasten the first weed emergence by warming the soil when temperature is limiting for germination. In southwestern Quebec, temperature appears to be the most important factor regulating germination in the spring since soil moisture is normally at field capacity for a long period, in part because of the melting of snow. Key words: Irrigation, weed emergence, soil moisture


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3414
Author(s):  
Giuseppe Provenzano ◽  
Giovanni Rallo ◽  
Ceres Duarte Guedes Cabral de Almeida ◽  
Brivaldo Gomes de Almeida

This study aimed to develop a new model, valid for soil with and without expandable characters, to estimate volumetric soil water content (θ) from readings of scaled frequency (SF) acquired with the Diviner 2000® sensor. The analysis was carried out on six soils collected in western Sicily, sieved at 5 mm, and repacked to obtain the maximum and minimum bulk density (ρb). During an air-drying process SF values, the corresponding gravimetric soil water content (U) and ρb were monitored. In shrinking/swelling clay soils, due to the contraction process, the variation of dielectric permittivity was affected by the combination of the mutual proportions between the water volumes and the air present in the soil. Thus, to account for the changes of ρb with U, the proposed model assumed θ as the dependent variable being SF and ρb the independent variables; then the model’s parameters were estimated based on the sand and clay fractions. The model validation was finally carried out based on data acquired in undisturbed monoliths sampled in the same areas. The estimated θ, θestim, was generally close to the corresponding measured, θmeas, with Root Mean Square Errors (RMSE) generally lower than 0.049 cm3 cm−3, quite low Mean Bias Errors (MBE), ranging between −0.028 and 0.045 cm3 cm−3, and always positive Nash-Sutcliffe Efficiency index (NSE), confirming the good performance of the model.


1988 ◽  
Vol 18 (4) ◽  
pp. 427-434 ◽  
Author(s):  
Richard Barry ◽  
André P. Plamondon ◽  
Jean Stein

An analysis of hydrologic soil properties and the prediction of volumetric soil water content during four summers have been done for a site located in the balsam fir (Abiesbalsamea (L.) Mill.) forest of the Lac Laflamme watershed. The hydrologic properties were used to identify three different soil layers, THIRSTY, a soil moisture model using the Penman evapotranspiration formula, was applied to predict daily volumetric water content of these layers. Predictions of soil moisture with the calibrated model were close to the observed data for the median layer (20–60 cm from the soil surface) and less accurate for the surface layer (0–20 cm) where important transpiration activities take place. The model appeared unreliable for predicting soil water content of the bottom layer (60–100 cm) which was often saturated by groundwater. The calibration of the model required modifications of the observed values of the available water content at field capacity and the relative root density factor and was adjusted with the crop coefficient of the Penman evapotranspiration formula. These modifications of observed physical parameters raise the question of the feasibility of extrapolating the model to other sites without extensive calibration. The high sensitivity to variations of the crop coefficient applied to the evapotranspiration equation indicated that a more physically based transpiration model, supported by field-oriented process studies, would be required to improve the model's performance.


Sign in / Sign up

Export Citation Format

Share Document