scholarly journals Residual Nitrogen and Kill Date Effects on Winter Cover Crop Growth and Nitrogen Content in a Vegetable Production System

2001 ◽  
Vol 11 (2) ◽  
pp. 219-225 ◽  
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A 4-year field experiment examined how monoculture and biculture winter cover crops were affected by prior inorganic nitrogen (N) fertilization of sweet corn (Zea mays) and by kill dates associated with tillage methods. Hairy vetch (Vicia villosa) biomass production and N content remained relatively constant with (N+) or without (N0) prior N application. In N+ treatments, biomass production of winter rye (Secale cereale) and a vetch-rye biculture were significantly greater than vetch biomass production. Rye responded to prior N fertilization and recovered N from residual inorganic N fertilizer at an average annual rate of 30 kg·ha-1 (27 lb/acre), excluding contributions of roots. Nitrogen contents of vetch and biculture cover crops were similar in most years and were significantly greater than those of rye. Nitrogen contents in vetch and biculture treatments were not increased by the residual inorganic N fertilizer addition of the N+ treatment. In the biculture treatment prior N application increased total biomass production but decreased the percentage of vetch biomass. Monoculture vetch biomass production was significantly increased by delaying cover crop kill dates for 8 days in mid-May. However, such delays also significantly lowered vetch foliar N concentrations and consequently did not significantly affect vetch N content. No significant effects of delays on rye or biculture cover crops were detected. It was concluded that prior fertilization of sweet corn with inorganic N affected various cover crops differently and that delaying vetch kill dates 8 days increased biomass production but did not affect N content.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 472A-472
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on `Merit' sweet corn in 1994, 1995, and 1996. Main plots received tillage or no-tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus inorganic N fertilization. The shoot N contents of vetch and mix cover crops ranged from 100 to 150 kg/ha, whereas N contents of rye were usually <50 kg/ha. In 1994 and 1995, vetch shoot N contents were 150 kg/ha, and corn yields following vetch were not significantly affected by addition of inorganic N fertilizer. In 1996, vetch N contents only equaled 120 kg/ha, and corn yields were significantly increased by addition of inorganic N. Supplemental N was also required to obtain maximum yields following mix and rye cover crops in all years, even though the N contents of vetch and mix cover crops were normally similar. Measurements of corn foliar N and available soil N were in agreement with the yield results. No-tillage did not significantly affect corn yields following vetch. However, no-till corn yields were reduced with rye (1995) and the mix (1995 and 1996) as a result of reduced corn plant population densities. Reliable tillage results were not obtained for 1994. It was concluded that a vetch cover crop could adequately supply N to sweet corn if vetch N content was at least 150 kg/ha. Sweet corn following rye or vetch/rye mix cover crops required additional N for optimal yields. Significant N in the mix cover crop was probably immobilized as the rye component decomposed. No-till sweet corn was grown successfully following vetch, but yields were often reduced with the mix or rye cover crops.


2002 ◽  
Vol 12 (1) ◽  
pp. 118-125 ◽  
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

Effects of tillage, inorganic N, and winter cover crops on sweet corn (Zea mays) were examined in 1994, 1995, and 1996. Tillage treatments were tillage or no tillage, and N treatments were the addition of inorganic N at 0 (N0) or 200 (N+) kg·ha-1 (0 or 179 lb/acre). Winter cover crops included hairy vetch (Vicia villosa), winter rye (Secale cereale), and a vetch/rye biculture. In the N0, rye treatment, the soil was N deficient in 1994 and highly N deficient in 1995 and 1996. When vetch shoot N content was ≥150 kg·ha-1 (134 lb/acre) (1994 and 1995), addition of inorganic N did not increase corn yields, and it only increased corn foliar N concentrations by 8%. Reductions in corn yields (29%) and foliar N concentrations (24%) occurred when vetch shoot N content was only 120 kg·ha-1 (107 lb/acre) (1996) and inorganic N was not supplied. In 1994, the vetch/rye biculture supplied sufficient N for maximum corn yields, but addition of inorganic N increased yields by more than 50% in 1995 and 1996. Under tilled conditions, the vetch N contribution to corn appeared to equal (1996) or exceed (1994 and 1995) 82 kg·ha-1 (73 lb/acre) of N supplied as ammonium nitrate, whereas a mean value of 30 kg·ha-1 (27 lb/acre) was obtained for the biculture cover crop (1995 and 1996). No significant effects of tillage on sweet corn population densities were detected following vetch, but no-tillage significantly reduced corn population densities following rye (17%) or biculture (35%) cover crops compared to tillage. No-tillage did not reduce yields from emerged seedlings (per plant basis) for any cover crops. Vetch appeared to be a satisfactory N source for sweet corn when vetch N content was ≥150 kg·ha-1, and it could be used with no-tillage without yield reductions.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 461E-461
Author(s):  
H.J. Hruska ◽  
G.R. Cline ◽  
A.F. Silvernail ◽  
K. Kaul

Research began in 1999 to examine sustainable production of bell peppers (Capsicum annuum L.) using conservation tillage and legume winter cover crops. Tillage treatments included conventional tillage, strip-tillage, and no-tillage, and winter covers consisted of hairy vetch (Vicia villosa Roth), winter rye (Secale cereale L.), and a vetch/rye biculture. Pepper yields following the rye winter cover crop were significantly reduced if inorganic N fertilizer was not supplied. However, following vetch, yields of peppers receiving no additional N were similar to yields obtained in treatments receiving the recommended rate of inorganic N fertilizer. Thus, vetch supplied sufficient N to peppers in terms of yields. Pepper yields following the biculture cover crop were intermediate between those obtained following vetch and rye. When weeds were controlled manually, pepper yields following biculture cover crops were similar among the three tillage treatments, indicating that no-tillage and strip-tillage could be used successfully if weeds were controlled. With no-tillage, yields were reduced without weed control but the reduction was less if twice the amount of residual cover crop surface mulch was used. Without manual weed control, pepper yields obtained using strip-tillage were reduced regardless of metolachlor herbicide application. It was concluded that a vetch winter cover crop could satisfy N requirements of peppers and that effective chemical or mechanical weed control methods need to be developed in order to grow peppers successfully using no-tillage or strip-tillage.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 669d-669
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. No significant effects of tillage on sweet corn yields were detected. Following corn not receiving inorganic N, vetch produced cover crop total N yields of 130 kg·ha–1 that were over three-times greater than those obtained with rye. Following rye winter covercrops, addition of ammonium nitrate to corn significantly (P < 0.05) increased corn yields and foliar N concentrations compared to treatments not receiving N. However, following vetch, corn yields and foliar N concentrations obtained without N fertilization equaled those obtained with N fertilization following rye or vetch. Available soil N was significantly (P < 0.05) greater following vetch compared to rye for ≈9 weeks after corn planting and peaked ≈4 weeks after planting. It was concluded that no-tillage sweet corn was successful and N fixed by vetch was able to sustain sweet corn production.


2014 ◽  
Vol 7 ◽  
pp. ASWR.S13861 ◽  
Author(s):  
Corey G. Lacey ◽  
Shalamar D. Armstrong

Little is known about the timing and quantity of nitrogen (N) mineralization from cover crop residue following cover crop termination. Therefore, the objective of this study was to examine the impact of cover crop species on the return of fall applied N to the soil in the spring following chemical and winter terminations. Fall N was applied (200 kg N ha−1) into a living stand of cereal rye, tillage radish, and control (no cover crop). After chemical termination in the spring, soil samples were collected weekly and were analyzed for inorganic N (NO3-N and NH4-N) to investigate mineralization over time. Cereal rye soil inorganic N concentrations were similar to that of the control in both the spring of 2012 and 2013. Fall N application into tillage radish, cereal rye, and control plots resulted in an average 91, 57, and 66% of the fall N application rate as inorganic N in the spring at the 0-20 cm depth, respectively. The inclusion of cover crops into conventional cropping systems stabilized N at the soil surface and has the potential to improve the efficiency of fall applied N.


Author(s):  
Kaiê Fillipe Guedes Miranda ◽  
José Luiz Rodrigues Torres ◽  
Hamilton Cesar de Oliveira Charlo ◽  
Valdeci Orioli Junior ◽  
João Henrique de Souza Favaro ◽  
...  

In recent years, the growth of the cultivated area with sweet corn in conventional tillage system in Brazil expanded, although crops can be grown on different residues of cover crops, which improve nutrient cycling and crop productivity. The objective of this study was to evaluate the biomass production and to quantify the rate of plant residues decomposition of different cover crops, and correlate the results with the production and grain yield of sweet corn in an area located in the Cerrado biome. The experimental design used was randomized blocks with eight treatments: PM - pearl millet; SH - sunn hemp; SG - signal grass; PM + SH; PM + SG; SH + SG; PM+ SH + SG; FW - fallow (spontaneous vegetation), which preceded the cultivation of sweet corn. Fresh biomass (FB) and dry biomass (DB) of the cover crops were evaluated, as well as the rate of plant residue decomposition. Sweet corn productivity, straw and corncob weight, and grain yield were also determined. Pearl millet presented a better performance in FB production, decomposition rate, residue half-life (T½ life) in soil, yield, corn cob strawweight and yield of sweet corn. Pearl millet, when mixed with other plants, presented reduced rate of residue decomposition and increased residue T½ life. The FW presented the lowest biomass production, with great rate of decomposition and low T½ life. Cover crops grown before sweet corn in soils of good fertility did not affect crop agronomic characteristics. Pearl millet is the best cover crop adapted to Cerrado Brazilian climatic conditions to be used in monoculture or in mixtures with other plants.


2013 ◽  
Vol 53 (3) ◽  
pp. 248-252 ◽  
Author(s):  
Henrique von Hertwig Bittencourt ◽  
Paulo Emílio Lovato ◽  
Jucinei José Comin ◽  
Marcos Alberto Lana ◽  
Miguel Angel Altieri ◽  
...  

Abstract A greenhouse assay was carried out to evaluate the effect of winter cover crop residues on spontaneous plants that commonly occur on summer annual fields in Southern Brazil. Dry shoot residues of rye (Secale cereale), vetch (Vicia villosa), fodder radish (Raphanus sativus), and a mix of the three species, were applied over pots that had been seeded with alexandergrass (Brachiaria plantaginea), hairy beggarticks (Bidens pilosa), wild poinsettia (Euphorbia heterophylla), and morning glory (Ipomoea grandifolia) at four different depths (0, 1, 2, or 4 cm). Plant emergence and biomass production were measured. Residues of rye reduced the emergence of B. plantaginea, while vetch diminished I. grandifolia and B. plantaginea emergence. Fodder radish reduced emergence of I. grandifolia. The mix of cover crops reduced emergence of I. grandifolia, B. plantaginea, and B. pilosa. None of the cover crops differed from the control on E. heterophylla emergence. The lowest yields in spontaneous plant shoot biomass were obtained from the cover with rye + vetch + fodder radish. The lowest values of root biomass occurred under cover with rye, fodder radish or the mix. Use of vetch residues decreased emergence of B. plantaginea and I. grandifolia, but enhanced biomass accumulation by the latter


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 664-668 ◽  
Author(s):  
John Z. Burket ◽  
Delbert D. Hemphill ◽  
Richard P. Dick

Cover crops hold potential to improve soil quality, to recover residual fertilizer N in the soil after a summer crop that otherwise might leach to the groundwater, and to be a source of N for subsequently planted vegetable crops. The objective of this 5-year study was to determine the N uptake by winter cover crops and its effect on summer vegetable productivity. Winter cover crops [red clover (Trifolium pratense L.), cereal rye (Secale cereale L. var. Wheeler), a cereal rye/Austrian winter pea (Pisum sativum L.) mix, or a winter fallow control] were in a rotation with alternate years of sweet corn (Zea mays L. cv. Jubilee) and broccoli (Brassica oleracea L. Botrytis Group cv. Gem). The subplots were N rate (zero, intermediate, and as recommended for vegetable crop). Summer relay plantings of red clover or cereal rye were also used to gain early establishment of the cover crop. Cereal rye cover crops recovered residual fertilizer N at an average of 40 kg·ha-1 following the recommended N rates, but after 5 years of cropping, there was no evidence that the N conserved by the cereal rye cover crop would permit a reduction in inorganic N inputs to maintain yields. Intermediate rates of N applied to summer crops in combination with winter cover crops containing legumes produced vegetable yields similar to those with recommended rates of N in combination with winter fallow or cereal rye cover crops. There was a consistent trend (P < 0.12) for cereal rye cover crops to cause a small decrease in broccoli yields as compared to winter fallow.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 892A-892
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment was conducted to examine effects of tillage and winter cover crops on sweet corn. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix. Nitrogen treatments consisted of either adding or not adding NH4NO3 at recommended rates. No significant effects of tillage on sweet corn yields were detected, although yields with tillage were slightly greater. Following rye winter cover crops, adding NH4NO3 to corn significantly (P ≤ 0.05) increased yields by 56% compared to treatments not receiving N. However, following vetch, corn yields obtained without N fertilization equaled those obtained with N fertilization following rye or vetch. It was concluded that 1) nontilled sweet corn was successful and 2) N2 fixed by vetch was able to sustain sweet corn production completely and was equivalent to a minimum of 70 kg N/ha.


Sign in / Sign up

Export Citation Format

Share Document