scholarly journals Winter Cover Crops and Nitrogen Management in Sweet Corn and Broccoli Rotations

HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 664-668 ◽  
Author(s):  
John Z. Burket ◽  
Delbert D. Hemphill ◽  
Richard P. Dick

Cover crops hold potential to improve soil quality, to recover residual fertilizer N in the soil after a summer crop that otherwise might leach to the groundwater, and to be a source of N for subsequently planted vegetable crops. The objective of this 5-year study was to determine the N uptake by winter cover crops and its effect on summer vegetable productivity. Winter cover crops [red clover (Trifolium pratense L.), cereal rye (Secale cereale L. var. Wheeler), a cereal rye/Austrian winter pea (Pisum sativum L.) mix, or a winter fallow control] were in a rotation with alternate years of sweet corn (Zea mays L. cv. Jubilee) and broccoli (Brassica oleracea L. Botrytis Group cv. Gem). The subplots were N rate (zero, intermediate, and as recommended for vegetable crop). Summer relay plantings of red clover or cereal rye were also used to gain early establishment of the cover crop. Cereal rye cover crops recovered residual fertilizer N at an average of 40 kg·ha-1 following the recommended N rates, but after 5 years of cropping, there was no evidence that the N conserved by the cereal rye cover crop would permit a reduction in inorganic N inputs to maintain yields. Intermediate rates of N applied to summer crops in combination with winter cover crops containing legumes produced vegetable yields similar to those with recommended rates of N in combination with winter fallow or cereal rye cover crops. There was a consistent trend (P < 0.12) for cereal rye cover crops to cause a small decrease in broccoli yields as compared to winter fallow.

2001 ◽  
Vol 16 (2) ◽  
pp. 66-72 ◽  
Author(s):  
F.J. Coale ◽  
J.M. Costa ◽  
G.A. Bollero ◽  
S.P. Schlosnagle

AbstractCereal rye is an effective winter cover crop because it accumulates residual soil N and reduces nitrate leaching. Wheat, barley, and triticale are alternative winter small grain species that may be managed as winter cover crops and yet produce marketable commodities. The objectives of this research were to evaluate N recovery capacity and grain yields of wheat, barley, triticale, and cereal rye grown as winter cover crops. Field plots established in 1996 and 1997 at two different locations on Maryland's mid-Atlantic Coastal Plain were amended with annual spring applications of four rates of broiler litter in a randomized complete block design with four replications. Each manure rate plot was divided into four subplots by planting four winter small grain cover crops: wheat, barley, triticale, and cereal rye. Rye cover crop treatments were killed with herbicide when the plants were 30 to 50 cm tall, while the wheat, barley, and triticale treatments continued to grow until grain maturity. Barley, rye, triticale, and wheat cover crops exhibited similar capacities to accumulate soil N, and therefore, reduce the potential for NO3—N leaching to groundwater. At the time of rye kill-down, aerial biomass N accumulation ranged from 11 to 112 kg N ha−1 and soil NO3—N levels were low (<1.5 mg NO3—N kg−1) and relatively uniform across treatments. Average barley, triticale, and wheat grain yields increased with previous broiler litter application rate and initial soil NO3—N concentration. Potential income derived from the grain and straw produced could partially or completely offset cover crop production costs.


2007 ◽  
Vol 8 (1) ◽  
pp. 18
Author(s):  
K. L. Ong ◽  
B. A. Fortnum ◽  
D. A. Kluepfel ◽  
M. B. Riley

Bacterial wilt, caused by Ralstonia solanacearum, is a serious disease for tobacco farmers in the southeastern USA. The lack of suitable land for crop rotation and increased area of production on farms has resulted in shorter rotations, and increased losses due to bacterial wilt. Cover crops are rarely grown immediately before a tobacco crop because soil fumigation for nematode control necessitates early destruction of the cover crop. The microbial activity associated with growing winter cover crops may alter populations of R. solanacearum. This field study evaluated vetch, canola, or rye winter cover crops for suppression of bacterial wilt. Averaged over two tobacco crops, vetch preceding tobacco reduced bacterial wilt disease incidence 33% and increased crop yield and value (37% and 41%, respectively) when compared to a winter fallow. A two-year rotation involving both winter cover and summer rotation crops also showed that winter cover crops increased yields and reduced disease incidence when used following a nonsusceptible summer crop. Soybean rotation followed by a vetch winter cover reduced disease incidence 73% and increased yields 132% when compared to tobacco without a summer soybean rotation and with a bare winter fallow. Data suggest that losses to bacterial wilt can be reduced significantly with use of a vetch winter cover. Accepted for publication 14 February 2007. Published 22 May 2007.


2017 ◽  
Vol 70 ◽  
pp. 171-178
Author(s):  
M.R. Trolove ◽  
T.K. James ◽  
A.W. Holmes ◽  
M.D. Parker ◽  
S.J. McDougall ◽  
...  

Winter cover crops potentially have a number of positive production and environmental benefits on subsequent maize (Zea mays) crops. A field study was undertaken in 2016/17 to evaluate the effects of winter cover crop residues on the emergence and growth of weeds, required herbicide inputs, and yields of maize in comparison to a winter fallow. Weed ground cover at maize canopy closure was 81—85% less than the winter fallow in plots with ryegrass (Lolium multiflorum), oats (Avena sativa) and gland clover (Trifolium glanduliferum) residues and 57% less in faba bean (Vicia faba). Ryegrass and oats residues maintained ground coverage of >70%, while clover had only 6% at canopy closure, but suppressed weeds similarly. In the absence of herbicides maize silage yields in plots with cover crop residues were similar to those in herbicide treatments, although maize establishment and growth was slower in oats and ryegrass.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 495a-495
Author(s):  
Bharat P. Singh ◽  
Upendra M. Sainju ◽  
Wayne F. Whitehead

Cover crops are planted during winter to prevent soil erosion, improve soil quality, and supply nutrients to the subsequent spring crops. In a 2-year study, three winter cover crops were compared for their nitrogen assimilation and biomass yielding ability. The experimental design was randomized complete block replicated four times with cereal rye, hairy vetch, crimson clover, and a fallow control comprising the treatments. Cover crop roots were well distributed from 1 to 50 cm of soil depth and increased from fall to spring as temperature increased. There was greater reduction in soil inorganic N during fall and winter in cover crop plots compared to control. Early season soil NO–3 concentration was lower in rye than crimson clover or hairy vetch. The amount of N assimilated by hairy vetch and crimson clover was significantly greater than cereal rye or control. There was no difference in the biomass yield of the three cover crops during the first year, but cereal rye and crimson clover produced significantly greater biomass than hairy vetch during the second year. The results suggest that cereal rye is more suited for preventing leaching of residual N from the preceding summer crop, while the two legumes can supply more N to the following crop.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 601D-601
Author(s):  
N.K. Damayanthi Ranwala ◽  
Kathy Brock ◽  
Chris L. Ray ◽  
Katie Greene ◽  
Dennis R. Decoteau

Rye and crimson clover as winter cover crops and red clover as a companion crop were evaluated in sweet corn and bell pepper production systems in South Carolina. Winter cover crops were planted in fall and incorporated into the soil 3 weeks prior to planting vegetable crops. Red clover was overseeded with the vegetable crops. There were no significant differences among treatments for corn yield. Marketable number and weight of bell peppers were significantly higher in both winter cover crops compared to red clover and fallow (control) treatments. Number of cull peppers (smaller peppers than USDA grades) were lower in both cover crops compared to other treatments. Lack of response in red clover compared to the fallow treatment may be due to the lower emergence of red clover when used as a companion crop with bell pepper. Marketable bell pepper yield was higher in the late harvest compared to the early harvest in all the treatments.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


2014 ◽  
Vol 18 (12) ◽  
pp. 5239-5253 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990–2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha−1, but decreased to 4.6–10.1 kg ha−1 with cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.


Author(s):  
John M. Wallace ◽  
Sarah Isbell ◽  
Ron Hoover ◽  
Mary Barbercheck ◽  
Jason Kaye ◽  
...  

Abstract Organic grain producers are interested in interseeding cover crops into corn (Zea mays L.) in regions that have a narrow growing season window for post-harvest establishment of cover crops. A field experiment was replicated across 2 years on three commercial organic farms in Pennsylvania to compare the effects of drill- and broadcast-interseeding to standard grower practices, which included post-harvest seeding cereal rye (Secale cereale L.) at the more southern location and winter fallow at the more northern locations. Drill- and broadcast-interseeding treatments occurred just after last cultivation and used a cover crop mixture of annual ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] + orchardgrass (Dactylis glomerata L.) + forage radish (Raphanus sativus L. ssp. longipinnatus). Higher mean fall cover crop biomass and forage radish abundance (% of total) was observed in drill-interseeding treatments compared with broadcast-interseeding. However, corn grain yield and weed suppression and N retention in late-fall and spring were similar among interseeding treatments, which suggests that broadcast-interseeding at last cultivation has the potential to produce similar production and conservation benefits at lower labor and equipment costs in organic systems. Post-harvest seeding cereal rye resulted in greater spring biomass production and N retention compared with interseeded cover crops at the southern location, whereas variable interseeding establishment success and dominance of winter-killed forage radish produced conditions that increased the likelihood of N loss at more northern locations. Additional research is needed to contrast conservation benefits and management tradeoffs between interseeding and post-harvest establishment methods.


Author(s):  
Barbara Baraibar ◽  
David A. Mortensen ◽  
Mitchell C. Hunter ◽  
Mary E. Barbercheck ◽  
Jason P. Kaye ◽  
...  

2014 ◽  
Vol 30 (5) ◽  
pp. 473-485 ◽  
Author(s):  
Natalie P. Lounsbury ◽  
Ray R. Weil

AbstractOrganic no-till (NT) management strategies generally employ high-residue cover crops that act as weed-suppressing mulch. In temperate, humid regions such as the mid-Atlantic USA, high-residue winter cover crops can hinder early spring field work and immobilize nutrients for cash crops. This makes the integration of cover crops into rotations difficult for farmers, who traditionally rely on tillage to prepare seedbeds for early spring vegetables. Our objectives were to address two separate but related goals of reducing tillage and integrating winter cover crops into early spring vegetable rotations by investigating the feasibility of NT seeding spinach (Spinacia oleracea L.), an early spring vegetable, into winterkilled cover crops. We conducted a four site-year field study in the Piedmont and Coastal Plain regions of Maryland, USA, comparing seedbed conditions and spinach performance after forage radish (FR) (Raphanus sativus L.), a low-residue, winterkilled cover crop, spring oat (Avena sativa L.), the traditional winterkilled cover crop in the area, a mixture of radish and oat, and a no cover crop (NC) treatment. NT seeded spinach after FR had higher yields than all other cover crop and tillage treatments in one site year and was equal to the highest yielding treatments in two site years. Yield for NT spinach after FR was as high as 19 Mg ha−1 fresh weight, whereas the highest yield for spinach seeded into a rototilled seedbed after NC was 10 Mg ha−1. NT seeding spring spinach after a winterkilled radish cover crop is feasible and provides an alternative to both high-residue cover crops and spring tillage.


Sign in / Sign up

Export Citation Format

Share Document