scholarly journals Water Budgets to Schedule Irrigation for Vegetables

1992 ◽  
Vol 2 (1) ◽  
pp. 54-59 ◽  
Author(s):  
Doyle A. Smittle ◽  
W. Lamar Dickens

Instrumented rainfall- and groundwater-protected irrigation shelters were used to establish relationships (daily crop factors) between pan evaporation and daily water use for several vegetables. Use of these daily crop factors (water use/pan evaporation) and pan evaporation data for scheduling irrigations are described. Snap bean (Phaseolus vulgaris L.) is used to illustrate irrigation scheduling by this method. A table of the model output with columnar headings of age, root depth, date, pan evaporation, crop factor, daily water use, cumulative water use, allowable water use, rainfall, and irrigation is presented. When irrigation was applied according to the model, soil water tension was held below 25 db at 6-inch (15-cm) soil depth. With varying irrigation rates under a line-source irrigation system, marketable pod yields were maximized at 100% of the model rate. Marketable yields of summer squash also were maximized when irrigation was applied at 100% of the model rate. Marketable yields of sweetpotato were not affected by irrigation rates ranging from 1% to 177% of the model rate.

1993 ◽  
Vol 118 (6) ◽  
pp. 726-730 ◽  
Author(s):  
Eric H. Simonne ◽  
Doyle A. Smittle ◽  
Harry A. Mills

An irrigation scheduling model for turnip (Brassica rapa L.) was validated using a line-source irrigation system in a 2-year field trial. The model used a water balance, a variable root length, and a crop factor function of plant age (i). Evapotranspiration was computed daily as class A pan evaporation times a crop factor [CF(i) = 0.365 + 0.0154i-0.00011i2]. Irrigation according to the model maintained soil water tension at <25 kPa at a 30-cm depth. When rainfall amounts were less than water use, leaf yields responded quadratically to irrigation rates, from 0% to 160% of the model rate, and the highest leaf yield with the lowest water applications corresponded to the model rate. Therefore, this model could replace the “feel or see” methods commonly used for scheduling irrigation of leafy vegetables grown in the southeastern United States.


HortScience ◽  
1992 ◽  
Vol 27 (4) ◽  
pp. 308-310 ◽  
Author(s):  
Doyle A. Smittle ◽  
W. Lamar Dickens ◽  
James R. Stansell ◽  
Eric Simonne

Turnip (Brassica rapa L.) and mustard (Brassica juncea L.) were grown in drainage lysimeters under controlled soil water regimes during 2 years. Irrigation regimes consisted of water applications when the soil water tension at a 10-cm depth exceeded 25,50, or 75 kPa throughout growth of the two crops on two soil types during spring and fall production seasons. Leaf yield and water use were highest when irrigation was applied at 25 kPa soil water tension. Regression equations are presented to describe the relationships of daily pan evaporation and water use to plant age, and to compute daily evapotranspiration: pan evaporation ratios (crop factors) during spring and fall production seasons.


1994 ◽  
Vol 119 (5) ◽  
pp. 936-939 ◽  
Author(s):  
Doyle A. Smittle ◽  
W. Lamar Dickens ◽  
James R. Stansell

`Keystone Resistant Giant' bell pepper (Capsicum annuum L.) was grown in drainage lysimeters under controlled soil water regimes during 1982, 1984, and 1985. Three irrigation regimes were imposed on bell pepper grown on two soil types during spring and fall growing seasons. Irrigation regimes consisted of applying water when the soil water tension at 10 cm exceeded 25, 50, or 75 kPa during crop growth. Yields and water use were greatest when irrigation was applied at 25 kPa. Regression equations are presented to describe the relationships of water use to plant age and to compute the ratios of daily evapotranspiration to pan evaporation (crop factors) for bell pepper grown under the three irrigation regimes.


HortScience ◽  
2011 ◽  
Vol 46 (9) ◽  
pp. 1287-1293 ◽  
Author(s):  
Jongyun Kim ◽  
Marc W. van Iersel ◽  
Stephanie E. Burnett

Many ornamental plant growers water excessively to reduce the risk of drought stress. Scheduling irrigation in greenhouses is challenging because there is little quantitative information about ornamental plant water requirements and how water use changes when plants are grown in varying greenhouse environmental conditions. Models to estimate the daily water use (DWU) of greenhouse crops may provide a useful tool to conserve irrigation water. Our objective was to develop a model to predict DWU based on plant age and easily acquirable environmental data. Two petunia (Petunia ×hybrida) cultivars, Single Dreams Pink and Prostrate Easy Wave Pink, were grown in different sized containers (diameter = 10, 12.5, and 15 cm) to quantify their DWU for 6 weeks. The substrate water content (θ, v/v) was maintained at 0.40 m3·m−3 using an automated irrigation system with capacitance soil moisture sensors. Every irrigation event was recorded by a data logger, and this information was used to calculate the DWU of the plants. On overcast days early in the experiment, plants used only 4.8 to 13.8 mL·d−1. The maximum DWU of ‘Single Dreams Pink’ was 63, 96, and 109 mL·d−1 in 10-, 12.5-, and 15-cm containers, respectively. Late in the experiment, ‘Prostrate Easy Wave Pink’ petunia used more water than ‘Single Dreams Pink’ because of their more vigorous growth habit. DWU was modeled as a function of days after planting (DAP), daily light integral (DLI), vapor pressure deficit (VPD), temperature, container size, and interactions between these factors and DAP (R2 = 0.93 and 0.91 for ‘Single Dreams Pink’ and ‘Prostrate Easy Wave Pink’, respectively). Days after planting and container size were the most important factors affecting DWU and are indicative of plant size. Daily light integral was the most important environmental factor affecting DWU. These models, describing the DWU as a function of the DAP and environmental conditions, may be used as guidelines for accurately watering petunias in greenhouses and may improve irrigation scheduling.


2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Márcio José de Santana ◽  
Guilherme de Almeida Bocate ◽  
Murilo Augusto Sgobi ◽  
Stefany Silva de Souza ◽  
Taynara Tuany Borges Valeriano

The production and consumption of muskmelon have been increasing (MELO et al., 2014), thus, information on techniques for higher field productions are necessary. The experiment described in the present work was conducted in the IFTM, Uberaba, State of Minas Gerais, Brazil, aiming to evaluate the muskmelon yield under different soil water tensions. A randomized block experimental design was used with five treatments (soil water tensions of 10, 20, 30, 40 and 50 kPa) and four replications (plots of two rows of 14 plants). Two harvests were carried out and the fruit yield, stem diameter, number of fruits per plant and efficiency of water use were evaluated. Irrigation was performed with a drip irrigation system and managed with tensiometry. The cultivar Bonus n.2 was used with spacing of 1.0 x 0.6 m. The data of the variables were subjected to the F test and regression test. The treatments showed statistical differences in number of fruits per plant, fruit weight (fruit yield) and stem diameter. The highest fruit yield found was 1.36 kg fruit-1 and the highest water use efficiency was 4.08 g mm-1 with irrigation for a soil water tension of 10 kPa. The lowest fruit yield was found with irrigation for a soil water tension of 50 kPa.


HortScience ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Clinton C. Shock ◽  
Feng-Xin Wang

A fundamental way to schedule irrigation is through the monitoring and management of soil water tension (SWT). Soil water tension is the force necessary for plant roots to extract water from the soil. With the invention of tensiometers, SWT measurements have been used to schedule irrigation. There are different types of field instruments used to measure SWT, either directly or indirectly. Precise irrigation scheduling by SWT criteria is a powerful method to optimize plant performance. Specific SWT criteria for irrigation scheduling have been developed to optimize the production and quality of vegetable crops, field crops, trees, shrubs, and nursery crops. This review discusses known SWT criteria for irrigation scheduling that vary from 2 to 800 kPa depending on the crop species, plant product to be optimized, environmental conditions, and irrigation system. By using the ideal SWT and adjusting irrigation duration and amount, it is possible to simultaneously achieve high productivity and meet environmental stewardship goals for water use and reduced leaching.


1994 ◽  
Vol 119 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Doyle A. Smittle ◽  
W. Lamar Dickens ◽  
James R. Stansell

Cabbage (Brassica oleracea L.) was grown in drainage lysimeters under controlled soil water regimes during 3 years. Three irrigation regimes were imposed on cabbage grown on two soil types during the spring and fall growing seasons. Irrigation regimes consisted of applying water when the soil water tension at 10 cm exceeded 25, 50, or 75 kPa during crop growth. Yields and water use were highest when irrigation was applied at 25 kPa soil water tension. Regression equations are presented to describe the relationships of water use to plant age and to compute the ratios of daily evapotranspiration to pan evaporation (crop factors) for cabbage grown under the three irrigation regimes.


1992 ◽  
Vol 117 (5) ◽  
pp. 717-720 ◽  
Author(s):  
Doyle A. Smittle ◽  
W. Lamar Dickens ◽  
M. Jane Hayes

An irrigation scheduling model for summer squash (Cucurbita pepo L.) was developed and validated during 1986, 1987, and 1989. The model is represented by the equation: 12.7(i - 4) × 0.5ASW = Di-1 + [E(0.14 + 0.015) - P - I]i, where crop age in days is i; effective root depth is 12.7(i - 4) with a maximum of 381 mm; usable water (cubic millimeter per cubic millimeter of soil) is 0.5ASW, deficit on the previous day is Di-1; evapotranspiration is pan evaporation (E) times 0.14 + 0.015i; rainfall (in millimeters) is P; and irrigation (in millimeters) is I. The model was validated during the three years using a line-source irrigation system with irrigation depths ranging from 5% to 160% of the model rates. Nitrogen rates were 50%, 100%, and 150% of the recommended rate. Marketable fruit yields increased as the irrigation depths increased up to the model rate then decreased with greater water application depths. Marketable fruit yields increased as the N rate increased in 1987 and 1989, but yields were similar at all N rates in 1986. The shelf life of marketable fruits was not influenced by irrigation or N rates.


1984 ◽  
Vol 11 (1) ◽  
pp. 4-6 ◽  
Author(s):  
D. K. Pahalwan ◽  
R. S. Tripathi

Abstract Field experiment was conducted during dry season of 1981 and 1982 to determine the optimal irrigation schedule for summer peanuts (Arachis hypogaea L.) in relation to evaporative demand and crop water requirement at different growth stages. It was observed that peanut crop requires a higher irrigation frequency schedule during pegging to pod formation stage followed by pod development to maturity and planting to flowering stages. The higher pod yield and water use efficiency was obtained when irrigations were scheduled at an irrigation water to the cumulative pan evaporation ratio of 0.5 during planting to flowering, 0.9 during pegging to pod formation and 0.7 during pod development to maturity stage. The profile water contribution to total crop water use was higher under less frequent irrigation schedules particularly when the irrigations were scheduled at 0.5 irrigation water to the cumulative pan evaporation ratio up to the pod formation stage.


1990 ◽  
Vol 115 (5) ◽  
pp. 712-714 ◽  
Author(s):  
Doyle A. Smittle ◽  
Melvin R. Hall ◽  
James R. Stansell

Sweetpotatoes [Ipomoea batatas (L.) Lam cv. Georgia Jet] were grown on two soil types in drainage lysimeters under controlled soil water regimes during 1982 and 1983. Water regimes consisted of irrigating the sweetpotatoes throughout growth when soil water tension at 23 cm exceeded 25, 50, or 100 kPa or by allowing a 100-kPa water stress before root enlargement, during early root enlargement, or throughout root enlargement. Water use and marketable yields were greater when sweetpotatoes were grown on a Tifton loamy sand (fine loamy, siliceous, thermic, Plinthitic Paleudult) than when grown on a Bonifay sand (loamy, siliceous, thermic, Grossarenic, Plinthitic Paleudult). Water use, marketable yield, and yield of U.S. #1 grade roots generally decreased when soil water tensions exceeded 25 kPa before irrigation, although soil water stress of 100 kPa during storage root development did not significantly affect yield. Regression equations are provided to describe the relationships of water use to plant age and to compute daily evapotranspiration: pan evaporation ratios (crop factors) for sweetpotatoes irrigated at 25, 50, and 100 kPa of soil water tension.


Sign in / Sign up

Export Citation Format

Share Document