scholarly journals Evaluation of Seven Complex Pennisetum Hybrids for Container and Landscape Performance in the Pacific Northwestern United States

2013 ◽  
Vol 23 (4) ◽  
pp. 525-528 ◽  
Author(s):  
Ryan N. Contreras ◽  
Jim Owen ◽  
Wayne Hanna ◽  
Brian Schwartz

Ornamental grasses such as fountaingrass or napiergrass, collectively called pennisetums, belong to the genus Pennisetum, which is a diverse genus with over 80 species adapted to a wide range of climatic regions and known for its drought tolerance. Breeding efforts have led to improvements such as more intense purple foliage color, disease resistance, and apparent sterility. These improved forms have been developed and tested in the eastern United States. The objective of this research was to evaluate container and field performance of seven new complex hybrid pennisetums in the Pacific northwestern United States. Two completely randomized experiments with three replications were conducted over 2 years (2010 and 2011) at two locations. We selected seven trispecific hybrid pennisetums resulting from interploid and interspecific crossing that were given accessions Tift 5, Tift 6, Tift 10, Tift 11, Tift, 13, Tift 15, and Tift 26. Experiment 1 evaluated container performance in Corvallis, OR, while Expt. 2 evaluated field performance in Aurora, OR. Size index (SI), growth form rating, and color rating were collected and analyzed separately by location. In the container study, significant differences were observed among selections for growth form in 2010 and color ratings in both 2010 and 2011. In 2010, Tift 6, Tift 11, Tift 13, and Tift 15 had the highest growth form rating. For color rating, Tift 5, Tift 10, and Tift 26 were among the four highest rated selections in both years. In the field study, Tift 5, Tift 10, Tift 11, and Tift 26 had the highest SI when data were pooled over the 2 years, but all selections reached acceptable size for landscape use during both years of the study. Similarly, there were color differences among selections with Tift 5, Tift 10, Tift 15, and Tift 26 being highest rated. None of the selections survived below winter temperatures of −5 °C at either location during either year of the study. Our evaluations indicate that these selections have potential in the Pacific northwestern United States as annuals. Differences in complex hybrid pennisetums were observed in SI, growth form rating, and color rating. These differences demonstrated the variation among selections and will allow producers to choose desired traits based on market preference.

2014 ◽  
Vol 27 (13) ◽  
pp. 5036-5055 ◽  
Author(s):  
Hailan Wang ◽  
Siegfried Schubert

The dominant pattern of SST variability in the Pacific during its cold phase produces pronounced precipitation deficits over the continental United States throughout the annual cycle. This study investigates the observed physical and dynamical processes through which the cold Pacific pattern affects U.S. precipitation, particularly the causes for the peak dry impacts in fall, as well as the nature of the differences between the summer and fall responses. Results show that the peak precipitation deficit over the United States during fall is primarily due to reduced atmospheric moisture transport from the Gulf of Mexico into the central and eastern United States and secondarily a reduction in local evaporation from land–atmosphere feedback. The former is associated with a strong and systematic low-level northeasterly flow anomaly over the southeastern United States that counteracts the northwest branch of the climatological North Atlantic subtropical high. The above northeasterly anomaly is maintained by both diabatic heating anomalies in the nearby intra-American seas and diabatic cooling anomalies in the tropical Pacific. In contrast, the modest summertime precipitation deficit over the central United States is mainly an intensification of the local dry anomaly in the preceding spring from local land–atmosphere feedback; the rather weak and disorganized atmospheric circulation anomalies over and to the south of the United States make little contribution. An evaluation of the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) AGCM simulations shows it to be deficient in simulating the warm season tropical convection responses over the intra-American seas to the cold Pacific pattern and thereby the precipitation responses over the United States, a problem that appears to be common to many AGCMs.


2012 ◽  
Vol 22 (1) ◽  
pp. 6-19 ◽  
Author(s):  
Mark P. Widrlechner ◽  
Christopher Daly ◽  
Markus Keller ◽  
Kim Kaplan

The accurate prediction of winter injury caused by low-temperature events is a key component of the effective cultivation of woody and herbaceous perennial plants. A common method employed to visualize geographic patterns in the severity of low-temperature events is to map a climatological variable that closely correlates with plant survival. The U.S. Department of Agriculture Plant Hardiness Zone Map (PHZM) is constructed for that purpose. We present a short history of PHZM development, culminating in the recent production of a new, high-resolution version of the PHZM, and discuss how such maps relate to winterhardiness per se and to other climatic factors that affect hardiness. The new PHZM is based on extreme minimum-temperature data logged annually from 1976 to 2005 at 7983 weather stations in the United States, Puerto Rico, and adjacent regions in Canada and Mexico. The PHZM is accessible via an interactive website, which facilitates a wide range of horticultural applications. For example, we highlight how the PHZM can be used as a tool for site evaluation for vineyards in the Pacific northwestern United States and as a data layer in conjunction with moisture-balance data to predict the survival of Yugoslavian woody plants in South Dakota. In addition, the new map includes a zip code finder, and we describe how it may be used by governmental agencies for risk management and development of recommended plant lists, by horticultural firms to schedule plant shipments, and by other commercial interests that market products seasonally.


2006 ◽  
Vol 19 (15) ◽  
pp. 3629-3639 ◽  
Author(s):  
Addison L. Sears-Collins ◽  
David M. Schultz ◽  
Robert H. Johns

Abstract A climatology of nonfreezing drizzle is created using surface observations from 584 stations across the United States and Canada over the 15-yr period 1976–90. Drizzle falls 50–200 h a year in most locations in the eastern United States and Canada, whereas drizzle falls less than 50 h a year in the west, except for coastal Alaska and several western basins. The eastern and western halves of North America are separated by a strong gradient in drizzle frequency along roughly 100°W, as large as about an hour a year over 2 km. Forty percent of the stations have a drizzle maximum from November to January, whereas only 13% of stations have a drizzle maximum from June to August. Drizzle occurrence exhibits a seasonal migration from eastern Canada and the central portion of the Northwest Territories in summer, equatorward to most of the eastern United States and southeast Canada in early winter, to southeastern Texas and the eastern United States in late winter, and back north to eastern Canada in the spring. The diurnal hourly frequency of drizzle across the United States and Canada increases sharply from 0900 to 1200 UTC, followed by a steady decline from 1300 to 2300 UTC. Diurnal drizzle frequency is at a maximum in the early morning, in agreement with other studies. Drizzle occurs during a wide range of atmospheric conditions at the surface. Drizzle has occurred at sea level pressures below 960 hPa and above 1040 hPa. Most drizzle, however, occurs at higher than normal sea level pressure, with more than 64% occurring at a sea level pressure of 1015 hPa or higher. A third of all drizzle falls when the winds are from the northeast quadrant (360°–89°), suggesting that continental drizzle events tend to be found poleward of surface warm fronts and equatorward of cold-sector surface anticyclones. Two-thirds of all drizzle occurs with wind speeds of 2.0–6.9 m s−1, with 7.6% in calm wind and 5% at wind speeds ⩾ 10 m s−1. Most drizzle (61%) occurs with visibilities between 1.5 and 5.0 km, with only about 20% occurring at visibilities less than 1.5 km.


2020 ◽  
Vol 110 (5) ◽  
pp. 1105-1116
Author(s):  
David H. Gent ◽  
Briana J. Claassen ◽  
David M. Gadoury ◽  
Niklaus J. Grünwald ◽  
Brian J. Knaus ◽  
...  

Powdery mildew, caused by Podosphaera macularis, is one of the most important diseases of hop. The disease was first reported in the Pacific Northwestern United States, the primary hop-growing region in this country, in the mid-1990s. More recently, the disease has reemerged in newly planted hopyards of the eastern United States, as hop production has expanded to meet demands of local craft brewers. The spread of strains virulent on previously resistant cultivars, the paucity of available fungicides, and the potential introduction of the MAT1-2 mating type to the western United States, all threaten sustainability of hop production. We sequenced the transcriptome of 104 isolates of P. macularis collected throughout the western United States, eastern United States, and Europe to quantify genetic diversity of pathogen populations and elucidate the possible origins of pathogen populations in the western United States. Discriminant analysis of principal components grouped isolates within three to five geographic populations, dependent on stringency of grouping criteria. Isolates from the western United States were phenotyped and categorized into one of three pathogenic races based on disease symptoms generated on differential cultivars. Western U.S. populations were clonal, irrespective of pathogenic race, and grouped with isolates originating from Europe. Isolates originating from wild hop plants in the eastern United States were genetically differentiated from all other populations, whereas isolates from cultivated hop plants in the eastern United States mostly grouped with isolates originating from the west, consistent with origins from nursery sources. Mating types of isolates originating from cultivated western and eastern U.S. hop plants were entirely MAT1-1. In contrast, a 1:1 ratio of MAT1-1 and MAT1-2 was observed with isolates sampled from wild plants or Europe. Within the western United States a set of highly differentiated loci were identified in P. macularis isolates associated with virulence to the powdery mildew R-gene R6. The weight of genetic and phenotypic evidence suggests a European origin of the P. macularis populations in the western United States, followed by spread of the pathogen from the western United States to re-emergent production regions in the eastern United States. Furthermore, R6 compatibility appears to have been selected from an extant isolate within the western United States. Greater emphasis on sanitation measures during propagation and quarantine policies should be considered to limit further spread of novel genotypes of the pathogen, both between and within production areas.


2018 ◽  
Vol 108 (3) ◽  
pp. 402-411 ◽  
Author(s):  
Christina Cowger ◽  
Lucky Mehra ◽  
Consuelo Arellano ◽  
Emily Meyers ◽  
J. Paul Murphy

Wheat powdery mildew is a disease of global importance that occurs across a wide geographic area in the United States. A virulence survey of Blumeria graminis f. sp. tritici, the causal agent, was conducted by sampling 36 wheat fields in 15 U.S. states in the years 2013 and 2014. Using a hierarchical sampling protocol, isolates were derived from three separated plants at each of five separated sites within each field in order to assess the spatial distribution of pathotypes. In total, 1,017 isolates from those fields were tested individually on single-gene differential cultivars containing a total of 21 powdery mildew resistance (Pm) genes. Several recently introgressed mildew resistance genes from wild wheat relatives (Pm37, Pm53, MlAG12, NCAG13, and MlUM15) exhibited complete or nearly complete resistance to all local B. graminis f. sp. tritici populations from across the sampled area. One older gene, Pm4b, also retained at least some efficacy across the sampled area. The B. graminis f. sp. tritici population sampled from Arkansas and Missouri, on the western edge of the eastern soft red winter wheat region, had virulence profiles more similar to other soft wheat mildew populations than to the geographically closer population from hard wheat fields in the Plains states of Oklahoma, Nebraska, and Kansas. The Plains population differed in that it was avirulent to several Pm genes long defeated in the soft-wheat-growing areas. Virulence complexity was greatest east of the Mississippi River, and diminished toward the west. Several recently introgressed Pm genes (Pm25, Pm34, Pm35, and NCA6) that are highly effective against mildew in the field in North Carolina were unexpectedly susceptible to eastern-U.S. B. graminis f. sp. tritici populations in detached-leaf tests. Sampled fields displayed a wide range of pathotype diversity and spatial distribution, suggesting that epidemics are caused by varying numbers of pathotypes in all regions. The research confirmed that most long-used Pm genes are defeated in the eastern United States, and the U.S. B. graminis f. sp. tritici population has different virulence profiles in the hard- and soft-wheat regions, which are likely maintained by host selection, isolation by distance, and west-to-east gene flow.


2008 ◽  
Vol 35 (1) ◽  
pp. 143-149 ◽  
Author(s):  
W. R. P. BOURNE

The report by Titian Ramsay Peale on birds encountered during the Wilkes Expedition was withdrawn for inaccuracy when few copies had been distributed, and re-written by John Cassin. A survey of the accounts of the petrels shows that this was not an improvement. Two important type localities for Procellaria brevipes and Thalassidroma lineata are probably wrong, and could be exchanged.


Author(s):  
David Vogel

This book examines the politics of consumer and environmental risk regulation in the United States and Europe over the last five decades, explaining why America and Europe have often regulated a wide range of similar risks differently. It finds that between 1960 and 1990, American health, safety, and environmental regulations were more stringent, risk averse, comprehensive, and innovative than those adopted in Europe. But since around 1990 global regulatory leadership has shifted to Europe. What explains this striking reversal? This book takes an in-depth, comparative look at European and American policies toward a range of consumer and environmental risks, including vehicle air pollution, ozone depletion, climate change, beef and milk hormones, genetically modified agriculture, antibiotics in animal feed, pesticides, cosmetic safety, and hazardous substances in electronic products. The book traces how concerns over such risks—and pressure on political leaders to do something about them—have risen among the European public but declined among Americans. The book explores how policymakers in Europe have grown supportive of more stringent regulations while those in the United States have become sharply polarized along partisan lines. And as European policymakers have grown more willing to regulate risks on precautionary grounds, increasingly skeptical American policymakers have called for higher levels of scientific certainty before imposing additional regulatory controls on business.


Sign in / Sign up

Export Citation Format

Share Document