scholarly journals Effect of Nitrogen Fertilization Rate on Aesthetic Quality of Landscape-grown Vines and Groundcovers

2014 ◽  
Vol 24 (5) ◽  
pp. 604-609 ◽  
Author(s):  
Amy L. Shober ◽  
Kimberly A. Moore ◽  
Gitta S. Hasing ◽  
Christine Wiese ◽  
Geoffrey C. Denny ◽  
...  

Research supporting recommendations for fertilizer needs of landscape-grown vines and groundcovers is lacking. The objectives of our study were to (1) evaluate the quality response of selected vine and groundcover species to nitrogen (N) fertilization at five rates and (2) validate the recommended N fertilizer rates (from the initial evaluation) by monitoring quality of additional landscape-grown vine and groundcover species. Three vine species and two groundcover species were planted in west-central Florida into raised beds containing subsoil fill material in a completely randomized design. Plants were fertilized every 6 weeks with a controlled release fertilizer (20N–0P–0K–23S) at an annual N rate of 0, 2, 4, 6, or 12 lb/1000 ft2. Plant aesthetic quality (0–5 scale) was assessed every 6 weeks for 30 weeks after planting. Although quality of some species increased significantly as N rate increased, all plants supplied with at least 4 lb/1000 ft2 per year N fertilizer had acceptable quality ratings of 3 or better. Screening of three additional vines and four additional groundcovers fertilized with controlled release fertilizer (42N–0P–0K) at an annual N rate of 3, 5, or 7 lb/1000 ft2 confirmed that fertilization with 2 to 4 lb/1000 ft2 per year should be adequate to maintain acceptable vines and groundcovers grown in the landscape in west-central Florida.

2014 ◽  
Vol 24 (5) ◽  
pp. 597-603
Author(s):  
Kimberly A. Moore ◽  
Amy L. Shober ◽  
Gitta S. Hasing ◽  
Christine L. Wiese ◽  
Geoffrey C. Denny ◽  
...  

Recent research suggested that the nitrogen (N) fertilizer rates needed to maintain high-quality landscape plants was lower than rates needed to grow the largest size plants. Our objective was to evaluate the effect of N fertilizer rate on the aesthetic quality of various landscape-grown annual and perennials species. Nineteen cool-season annuals, 20 warm-season annuals, and 4 perennials were planted into raised beds containing subsoil fill material in a completely randomized design in west-central Florida (U.S. Department of Agriculture hardiness zone 9b). Plants were fertilized every 12 weeks with polymer coated, slow-release N (42N–0P–0K) fertilizer at annual N rate of 3, 5, or 7 lb/1000 ft2 (annuals) or 1, 3, or 5 lb/1000 ft2 (perennials). Plants were rated for aesthetic quality every 6 weeks for a period of 18 weeks (annuals) or 54 weeks (perennials). For most species, quality ratings of plants fertilized with 3 lb/1000 ft2 of N per year (annuals) or 1 lb/1000 ft2 of N per year (perennials) were not significantly lower than plants receiving higher rates of N annually. Previously reported N fertilizer recommendations for central Florida of 2 to 4 lb/1000 ft2 per year should be adequate for maintaining acceptable quality landscape-grown annual and herbaceous perennial plant species.


2013 ◽  
Vol 23 (6) ◽  
pp. 898-904
Author(s):  
Amy L. Shober ◽  
Kimberly A. Moore ◽  
Nancy G. West ◽  
Christine Wiese ◽  
Gitta Hasing ◽  
...  

Despite inconsistent reports of nitrogen (N) fertilization response on growth of landscape-grown woody ornamentals, broad N fertilization recommendations exist in the literature. The objective of this research was to evaluate the growth and quality response of three landscape-grown woody shrub species to N fertilizer. Three ornamental shrub species, ‘Alba’ indian hawthorn (Raphiolepis indica), sweet viburnum (Viburnum odoratissimum), and ‘RADrazz’ (Knock Out™) rose (Rosa) were transplanted into field soils in central Florida (U.S. Department of Agriculture hardiness zone 9a). Controlled-release N fertilizer was applied at an annual N rate of 0, 2, 4, 6, and 12 lb/1000 ft2 for 100 weeks. Plant size index measurements, SPAD readings (a measure of greenness), and visual quality ratings were completed every month through 52 weeks after planting (WAP) and then every 3 months through 100 WAP. Plant tissue total Kjeldahl N (TKN) concentrations and shoot biomass were measured at 100 WAP. Results of regression analysis indicated little to no plant response (size index, biomass, SPAD) to N fertilizer rate. Shrub quality was acceptable for all species through 76 WAP regardless of the N fertilization rate. However, quality of rose and sweet viburnum fertilized with N at the low rates (<2 lb/1000 ft2) was less than acceptable (<3 out of 5) after 76 WAP. Results suggest that posttransplant applications of fertilizer may not increase plant growth, but that low-to-moderate levels of N fertilization (2 to 4 lb/1000 ft2 per year) may help plant maintain quality postestablishment.


2008 ◽  
Vol 26 (4) ◽  
pp. 235-238
Author(s):  
Amy L. Shober ◽  
Gary Leibee ◽  
Moh Leng Kok-Yokomi

Abstract Loropetalum chinense (also called Chinese Fringebush or Chinese Witch Hazel) is commonly used in the Florida landscapes. However, in recent years, there have been increasing reports and complaints of unexplained decline throughout Central Florida. The objective of this study was to evaluate the growth and quality response of declining L. chinense plants to foliar micronutrient and miticide applications. L. chinense ‘Ruby’ plants exhibiting significant decline symptoms were treated with eight foliar fertilizer treatments (High Cu, Low Cu, Kocide® 2000 [copper hydroxide], B, Mn, Zn, and Peters S.T.E.M.) and half of the plants also received two treatments of GardenTech Sevin Concentrate Bug Killer® (carbaryl, 22.5% AI). Plant growth was not influenced by miticide or fertilizer treatments. However, plants sprayed with Cu (i.e., Cu high, Cu low, and Kocide) had quality ratings, at 4 and 8 weeks after treatment, that were significantly higher than plants treated with other foliar fertilizers. Additionally, results indicated that there was no fertilizer treatment effect on mite populations. Failure of the miticide to enhance plant quality ratings, suggested that eriophyid mites were not associated with decline symptoms. The quality of declining landscape plantings of L. chinense ‘Ruby’ can be improved with the application of foliar Cu sprays.


2016 ◽  
Vol 4 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Binglin Chen ◽  
Hongkun Yang ◽  
Weichao Song ◽  
Chunyu Liu ◽  
Jiao Xu ◽  
...  

2006 ◽  
Vol 24 (3) ◽  
pp. 124-128
Author(s):  
L. Eric Hinesley ◽  
Frank A. Blazich ◽  
Scott A. Derby

Abstract Stem cuttings of Leyland cypress [x Cupressocyparis leylandii (A.B. Jacks. & Dallim.) Dallim. & A.B. Jacks], were rooted to determine the effect of A) date of collection, rooting substrate, and mist frequency, B) auxin formulation and concentration, C) rooting substrate, D) substrate fertility, and E) type of cutting and auxin concentration. Results were best for misting intervals of 5 to 7 min during the day, but 10 min was also adequate. Rooting was comparable for softwood cuttings collected in late May or late June. Powder and liquid auxin formulations, which both contained indolebutyric acid (IBA), yielded similar results. Cuttings that were more lignified (light tan color) at the bases benefited the most from higher concentrations [≈ 8000 ppm (0.8%)] of IBA in talc, whereas less mature cuttings (green at the bases) rooted in highest percentages with lower concentrations [≈ 3000 ppm (0.3%)]. Rooting was similar in substrates with a peat:perlite ratio (v/v) of 1:1, 1:2, or 1:4, whereas results were less satisfactory in 100% perlite. Controlled release fertilizer [1.8 kg/m3 (4 lb/yd3)] in the rooting substrate did not affect rooting percent, but greatly increased root mass and quality of rooted cuttings. Doubling the rate resulted in little additional improvement. Rooting was comparable for vigorous side shoots (1st-order laterals) and tips from vigorous upright branches (primary axes) of similar maturity.


2015 ◽  
Vol 25 (3) ◽  
pp. 370-379 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

The objective of this study was to determine the optimal controlled-release fertilizer (CRF) application rates or ranges for the production of five 2-gal nursery crops. Plants were evaluated following fertilization with 19N–2.6P–10.8K plus minors, 8–9 month CRF incorporated at 0.15, 0.45, 0.75, 1.05, 1.35, and 1.65 kg·m−3 nitrogen (N). The five crops tested were bigleaf hydrangea (Hydrangea macrophylla), ‘Green Velvet’ boxwood (Buxus ×), ‘Magic Carpet’ spirea (Spiraea japonica), ‘Palace Purple’ coral bells (Heuchera micrantha), and rose of sharon (Hibiscus syriacus). Most plant growth characteristics (i.e., growth index, plant height, leaf area, and shoot dry weight) were greater in high vs. low CRF treatments at the final harvest. Low CRF rates negatively impacted overall appearance and marketability. The species-specific CRF range recommendations were 1.05 to 1.35 kg·m−3 N for rose of sharon, 0.75 to 1.05 kg·m−3 N for ‘Magic Carpet’ spirea, and 0.75 to 1.35 kg·m−3 N for bigleaf hydrangea and ‘Green Velvet’ boxwood, whereas the recommended CRF rate for ‘Palace Purple’ coral bells was 0.75 kg·m−3 N. Overall, species-specific CRF application rates can be used to manage growth and quality of containerized nursery crops during production in a temperate climate.


FLORESTA ◽  
2022 ◽  
Vol 52 (1) ◽  
pp. 103
Author(s):  
Claudia Costella ◽  
Maristela Machado Araujo ◽  
Álavro Luís Pasquetti Berghetti ◽  
Suelen Carpenedo Aimi ◽  
Marllos Santos de Lima ◽  
...  

Corymbia citriodora and Eucalyptus dunnii are species of relevant importance due to the quality of the wood and growth potential in Southern Brazil. Therefore, we aimed to identify containers and doses of controlled-release fertilizer capable of enhancing the morphophysiological quality and growth of these species in the nursery, aiming for the proper management of these inputs. The seedlings were produced in two volumes of containers (50 e 110 cm³), filled with Sphagnum peat-based substrate, mixed with different doses of controlled-release fertilizer (CRF) NPK 15-09-12 (0, 3, 6, 9 e 12 g L-1 of substrates). In addition, the morphological (height, stem diameter, leaf area, dry weight of shoot, root, and total) and physiological (chlorophyll a and b index and quantum yield of the photosystem II) attributes were evaluated. The morphological attributes proved to be suitable indicators of the quality of C. citriodora and E. dunnii seedlings, allowing to recommend the container of 50 cm³ and the doses of 9.0 g L-1 of controlled-release fertilizer for both species. At the same time, the physiological variables evaluated were not responsive to the effect of the treatments.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Adrielly Costa Souza ◽  
Marcos André Piedade Gama ◽  
Dênmora Gomes Araújo ◽  
Gabriel Pinheiro Silva ◽  
Jéssy Anni Vilhena Senado

1996 ◽  
Vol 121 (5) ◽  
pp. 820-825 ◽  
Author(s):  
Darren L. Haver ◽  
Ursula K. Schuch

The objectives of this study were to determine 1) the minimum controlled-release fertilizer (CRF) rate and the lowest constant medium moisture required to produce the highest quality plants and 2) if this production system affected quality of these plants under two postproduction light levels. Two New Guinea impatiens (Impatiens sp. hybrids) `Illusion' and `Blazon' (Lasting Impressions Series) differing in salt tolerance were grown for 42 days with a CRF at three rates (3.3, 6.6, or 9.9 g/pot) and two medium moisture levels (low or high) without leaching. The high moisture level (tension setpoints of 1 to 3 kPa) and 6.6 g of CRF/pot produced optimum biomass. Low medium moisture (tension setpoints of 4 to 6 kPa) reduced leaf area, leaf number, leaf N content, root, stem, and leaf dry masses as CRF rate increased from low to high for `Illusion'. Similar results in `Blazon' were observed as CRF rates increased from 3.3 to 6.6 g. Biomass decreased no further at the high rate of 9.9 g/pot. Biomass increased in both cultivars under high medium moisture when CRF rates increased from 3.3 to 6.6 g. Biomass of `Illusion' decreased at 9.9 g/pot, although no symptoms of salt sensitivity were observed (i.e., leaf tip burn). `Blazon' maintained a similar biomass when amended with 9.9 or 6.6 g CRF/pot, although electrical conductivity (EC) in the medium was 5.9 dS·m-1 in the upper half and 4.1 dS·m-1 in the lower half of the medium at the end of production. Growth of `Illusion' responded more favorably to postproduction light levels that were similar to those of production regardless of treatment imposed during production. Similar biomass responses occurred for `Blazon' regardless of the postproduction light level.


Sign in / Sign up

Export Citation Format

Share Document