scholarly journals Use of Species-specific Controlled-release Fertilizer Rates to Manage Growth and Quality of Container Nursery Crops

2015 ◽  
Vol 25 (3) ◽  
pp. 370-379 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

The objective of this study was to determine the optimal controlled-release fertilizer (CRF) application rates or ranges for the production of five 2-gal nursery crops. Plants were evaluated following fertilization with 19N–2.6P–10.8K plus minors, 8–9 month CRF incorporated at 0.15, 0.45, 0.75, 1.05, 1.35, and 1.65 kg·m−3 nitrogen (N). The five crops tested were bigleaf hydrangea (Hydrangea macrophylla), ‘Green Velvet’ boxwood (Buxus ×), ‘Magic Carpet’ spirea (Spiraea japonica), ‘Palace Purple’ coral bells (Heuchera micrantha), and rose of sharon (Hibiscus syriacus). Most plant growth characteristics (i.e., growth index, plant height, leaf area, and shoot dry weight) were greater in high vs. low CRF treatments at the final harvest. Low CRF rates negatively impacted overall appearance and marketability. The species-specific CRF range recommendations were 1.05 to 1.35 kg·m−3 N for rose of sharon, 0.75 to 1.05 kg·m−3 N for ‘Magic Carpet’ spirea, and 0.75 to 1.35 kg·m−3 N for bigleaf hydrangea and ‘Green Velvet’ boxwood, whereas the recommended CRF rate for ‘Palace Purple’ coral bells was 0.75 kg·m−3 N. Overall, species-specific CRF application rates can be used to manage growth and quality of containerized nursery crops during production in a temperate climate.

2015 ◽  
Vol 33 (2) ◽  
pp. 66-75 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

To determine the response of container-grown shrubs to controlled-release fertilizer (CRF) rate when grown in a temperate climate, Polyon® 19–04–10 + Minors, an 8–9 month CRF, was incorporated into growing substrates for ‘Gro-Low’ fragrant sumac (Rhus aromatica Aiton), ‘Goldmound’ spirea (Spiraea × bumalda Burv.) and ‘Bloomerang’® purple lilac (Syringa × ‘Penda’) transplants. Also, a 15–06–11 + Micros, a 10–12 month CRF, was incorporated into growing substrates for ‘Green Mound’ boxwood (Buxus × ‘Green Mound’), ‘Runyan’ yew (Taxus × media) and ‘Emerald’ white-cedar (arborvitae) (Thuja occidentalis L.) transplants, at six rates (0.15, 0.45, 0.75, 1.05, 1.35 and 1.65 kg·m−3 N; 0.25, 0.76, 1.26, 1.77, 2.28 and 2.78 lb·yd−3 N). We observed greater growth index, leaf area, and shoot dry weight at high vs. low CRF rates for the majority of species. Nutrient deficiency symptoms such as light green leaves were observed at low CRF rates for some species, including fragrant sumac, lilac and white-cedar. Optimal species-specific CRF application rates were 1.05 kg·m−3 N (1.77 lb·yd−3 N) for lilac and yew and 0.45 kg·m−3 N (0.76 lb·yd−3 N) for boxwood and white-cedar, while the optimal CRF ranges were 0.75 to 1.35 kg·m−3 N (1.26 to 2.28 lb·yd−3 N) for fragrant sumac and 0.75 to 1.05 kg·m−3 N (1.26 to 1.77 lb·yd−3 N) for spirea. Adjusting CRF application rates based on plant response may provide nursery growers with an efficient tool for managing nursery crop growth and production timing in the temperate climate.


2015 ◽  
Vol 33 (2) ◽  
pp. 58-65
Author(s):  
G.A. Andiru ◽  
C.C. Pasian ◽  
J.M. Frantz

Bedding impatiens plants were grown with a 16N-3.9P-10K controlled-release-fertilizer (CRF) of 5–6 or 8–9 month longevities placed at four positions in the container: top-dressed, incorporated, top-one-third, and bottom. These were compared to plants grown with a 20N-4.4P-16.6 water-soluble fertilizer (WSF) at a rate of 150 mg·L−1 nitrogen (N) (150 ppm N). All treatments received the same volume of tap water (CRF treatments) or fertilizer solution (WSF treatment), which was enough to achieve a 20 to 30% leaching fraction. Leachates were collected and measured at each irrigation and the concentrations of N, phosphorous (P), and potassium (K) were measured. Shoot dry weight (SDW) and canopy cover (CC) were also determined. Fertilizing with WSF produced plants of similar size as CRF treatments. CRF applied at the bottom of the substrate leached the highest amount of N among all treatments. Higher concentrations for most nutrients were measured in the leachates from containers treated with 5–6 month CRF during the first 20 d after planting than the next 23 to 34 days. The higher levels of nutrients in the leachates observed within two weeks after planting does not support the use of 5–6 month CRF at the application rates used in this experiment with short-cycle plants such as bedding plants in compared to use of WSF. Except for the bottom placement treatment, the use of 8–9 month CRF resulted in generally less nutrients leached than WSF.


2017 ◽  
Vol 27 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Nicholas J. Flax ◽  
Christopher J. Currey ◽  
James A. Schrader ◽  
David Grewell ◽  
William R. Graves

Our objectives were to quantify the growth and quality of herbaceous annuals grown in different types of bioplastic-based biocontainers in commercial greenhouses and quantify producer interest in using these types of biocontainers in their production systems. Seedlings of ‘Serena White’ angelonia (Angelonia angustifolia) and ‘Maverick Red’ zonal geranium (Pelargonium ×hortorum) that had been transplanted into nine different (4.5-inch diameter) container types [eight bioplastic-based biocontainers and a petroleum-based plastic (PP) (control)] were grown at six commercial greenhouses in the upper midwestern United States. Plants were grown alongside other bedding annuals in each commercial greenhouse, and producers employed their standard crop culture practices. Data were collected to characterize growth when most plants were flowering. Questionnaires to quantify producer perceptions and interest in using bioplastic-based biocontainers, interest in different container attributes, and satisfaction were administered at select times during the experiment. Container type interacted with greenhouse to affect angelonia growth index (GI) and shoot dry weight (SDW), as well as shoot, root, and container ratings. Container type or greenhouse affected geranium GI and shoot rating, and their interaction affected SDW, and root and container ratings. These results indicate that commercial producers can grow herbaceous annuals in a range of bioplastic-based biocontainers with few or no changes to their crop culture practices.


HortScience ◽  
2014 ◽  
Vol 49 (11) ◽  
pp. 1414-1423 ◽  
Author(s):  
Erin Agro ◽  
Youbin Zheng

Region-specific trials examining optimum controlled-release fertilizer (CRF) rates for the Canadian climate are limited. This study was conducted to determine an optimum range of CRF application rates and the effect of the application rate on growth, nitrogen (N), and phosphorus (P) losses of six economically important container-grown woody ornamental shrubs using typical production practices at a southwestern Ontario nursery. Salix purpurea ‘Nana’, Weigela florida ‘Alexandra’, Cornus sericea ‘Cardinal’, Hydrangea paniculata ‘Bombshell’, Hibiscus syriacus ‘Ardens’, and Spiraea japonica ‘Magic Carpet’ were potted in 1-gal pots and fertilized with Polyon® 16N-2.6P-10K (5–6 month longevity) incorporated at rates of 0.8, 1.2, 1.7, 2.1, and 2.5 kg·m−3 N in 2012. The experiment was repeated for the 2013 growing season with rates of CRF incorporated at 0.05, 0.35, 0.65, 0.95, and 1.25 kg·m−3 N. Plant performance (i.e., growth index) and leachate electrical conductivity (EC) and pH were evaluated once every 3 to 4 weeks during the respective growing seasons. The amount of N and P lost to the environment was determined for the 2012 growing season. The interaction between nutrient supply rate and target species affected most response variables. Although higher levels of fertilization produced larger plants and had the potential to decrease production time, increased losses of N and P and higher EC leachate values occurred. Results of this study indicate that an acceptable range of CRF application rates can be used for each species depending on the production goals, i.e., decreased production time, maximum growth, or decreased nutrient leachate. Overall, the highest acceptable CRF rates within the optimal range were: 1.25 kg·m−3 N for Spiraea; 1.7 kg·m−3 N for Hydrangea; 2.1 kg·m−3 N for Cornus; and 2.5 kg·m−3 N for Weigela, Salix, and Hibiscus. The lowest acceptable rates within the optimal range were: 0.35 kg·m−3 N for Hibiscus; 0.65 kg·m−3 N for Cornus, Weigela, Salix, and Spiraea; and 0.80 kg·m−3 N for Hydrangea.


2004 ◽  
Vol 14 (4) ◽  
pp. 474-478 ◽  
Author(s):  
Kimberly K. Moore

Growth of `Aladdin Peach Morn' petunia (Petunia × hybrida) and `Accent White' impatiens (Impatiens wallerana) was compared in substrates containing 0%, 30%, 60%, or 100% compost made from biosolids and yard trimmings and fertilized with Nutricote Total 13-13-13 (13N-5.7P-10.8K) Types 70, 100, and 140 incorporated at rates of 0.5x, 1x, 2x, or 3x (x = standard application rate for a medium-feeding crop). Petunia shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x increased as the percentage of compost in the substrate increased from 0% to 60% and then decreased, while shoot dry weight of plants fertilized with Type 70 incorporated at 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 30% and then decreased. Impatiens shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x and 1x also increased as the percentage of compost increased from 0% to 30% and then decreased, while shoot dry weight of plants fertilized at 2x and 3x decreased as the percentage of compost increased from 0% to 100%. Both petunia and impatiens shoot dry weight of plants fertilized with Type 100 and Type 140 incorporated at 0.5x, 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 60% and then decreased.


FLORESTA ◽  
2022 ◽  
Vol 52 (1) ◽  
pp. 103
Author(s):  
Claudia Costella ◽  
Maristela Machado Araujo ◽  
Álavro Luís Pasquetti Berghetti ◽  
Suelen Carpenedo Aimi ◽  
Marllos Santos de Lima ◽  
...  

Corymbia citriodora and Eucalyptus dunnii are species of relevant importance due to the quality of the wood and growth potential in Southern Brazil. Therefore, we aimed to identify containers and doses of controlled-release fertilizer capable of enhancing the morphophysiological quality and growth of these species in the nursery, aiming for the proper management of these inputs. The seedlings were produced in two volumes of containers (50 e 110 cm³), filled with Sphagnum peat-based substrate, mixed with different doses of controlled-release fertilizer (CRF) NPK 15-09-12 (0, 3, 6, 9 e 12 g L-1 of substrates). In addition, the morphological (height, stem diameter, leaf area, dry weight of shoot, root, and total) and physiological (chlorophyll a and b index and quantum yield of the photosystem II) attributes were evaluated. The morphological attributes proved to be suitable indicators of the quality of C. citriodora and E. dunnii seedlings, allowing to recommend the container of 50 cm³ and the doses of 9.0 g L-1 of controlled-release fertilizer for both species. At the same time, the physiological variables evaluated were not responsive to the effect of the treatments.


HortScience ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 1956-1962
Author(s):  
Ji-Jhong Chen ◽  
Heidi Kratsch ◽  
Jeanette Norton ◽  
Youping Sun ◽  
Larry Rupp

Shepherdia ×utahensis ‘Torrey’ (‘Torrey’ hybrid buffaloberry) is an actinorhizal plant that can fix atmospheric nitrogen (N2) in symbiotic root nodules with Frankia. Actinorhizal plants with N2-fixing capacity are valuable in sustainable nursery production and urban landscape use. However, whether nodule formation occurs in S. ×utahensis ‘Torrey’ and its interaction with nitrogen (N) fertilization remain largely unknown. Increased mineral N in fertilizer or nutrient solution might inhibit nodulation and lead to excessive N leaching. In this study, S. ×utahensis ‘Torrey’ plants inoculated with soils containing Frankia were irrigated with an N-free nutrient solution with or without added 2 mm ammonium nitrate (NH4NO3) or with 0.0 to 8.4 g·L−1 controlled-release fertilizer (CRF; 15N–3.9P–10K) to study nodulation and plant morphological and physiological responses. The performance of inoculated plants treated with various amounts of CRF was compared with uninoculated plants treated with the manufacturer’s prescribed rate. Plant growth, gas exchange parameters, and shoot N content increased quadratically or linearly along with increasing CRF application rates (all P < 0.01). No parameters increased significantly at CRF doses greater than 2.1 g·L−1. Furthermore, the number of nodules per plant decreased quadratically (P = 0.0001) with increasing CRF application rates and nodule formation were completely inhibited at 2.9 g·L−1 CRF or by NH4NO3 at 2 mm. According to our results, nodulation of S. ×utahensis ‘Torrey’ was sensitive to N in the nutrient solution or in increasing CRF levels. Furthermore, plant growth, number of shoots, leaf area, leaf dry weight, stem dry weight, root dry weight, and N content of shoots of inoculated S. ×utahensis ‘Torrey’ plants treated with 2.1 g·L−1 CRF were similar to those of uninoculated plants treated with the manufacturer’s prescribed rate. Our results show that S. ×utahensis ‘Torrey’ plants inoculated with soil containing Frankia need less CRF than the prescribed rate to maintain plant quality, promote nodulation for N2 fixation, and reduce N leaching.


2020 ◽  
Vol 8 (3) ◽  
pp. 70 ◽  
Author(s):  
Aline das Graças Souza ◽  
Oscar José Smiderle ◽  
Raiovane Araújo Montenegro ◽  
Thiago Komuro Moriyama ◽  
Thiago Jardelino Dias

The aim of this study was to verify the effect of different substrates, in the presence and absence of controlled-release fertiliser, on the growth and morphological quality of seedlings of Agonandra brasiliensis Miers ex Benth. & Hook.f., in the state of Roraima, Brazil. The experimental design was a 2 * 5 factorial scheme, with and without the addition of 1.0 g L-1 NPK 18-05-09 formulation controlled-release encapsulated fertiliser (Forth CoteR) and five substrates. The following were evaluated: shoot height (H), collar diameter (CD), increase in shoot length (IncH) and collar diameter (IncCD), shoot dry weight (SDW), root dry weight (RDW), total dry weight (TDW) and Dickson quality index (DQI). The use of NPK 18-05-09 formulation controlled-release fertiliser (Forth CoteR) in a medium-sand substrate is recommended for obtaining plants of Agonandra brasiliensis of greater robustness, balance of biomass distribution, and a high standard of quality. In the substrate composed of soil from the cerrado + carbonised rice husks - CRH + organic substrate (2:1:1), the addition of NPK 18-05-09 formulation Forth CoteR is not necessary to obtain Agonandra brasiliensis plants of good morphological quality. Substrate 3, composed of soil + CRH (3:1), with or without the addition of NPK 18-05-09 formulation Forth CoteR, is not recommended for producing plants of Agonandra brasiliensis, due to the slow development and reduced morphological quality of the plants.


2015 ◽  
Vol 95 (2) ◽  
pp. 251-262 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

Clark, M. J. and Zheng, Y. 2015. Species-specific fertilization can benefit container nursery crop production. Can. J. Plant Sci. 95: 251–262. To determine the responses of six container-grown shrub species to different controlled-release fertilizer (CRF) application rates, plant growth and root-zone traits were evaluated following fertilization with Polyon® 16–6–13, 5–6 month CRF incorporated at 0.60, 0.89, 1.19, 1.49 and 1.79 kg m−3 N. The six species tested at a southwestern Ontario, Canada, nursery were Cornus stolonifera ‘Flaviramea’ (yellow-twig dogwood), Euonymus alatus ‘Compactus’ (dwarf winged euonymus), Hydrangea paniculata ‘Grandiflora’ (Pee Gee hydrangea), Physocarpus opulifolius ‘Nugget’ (Nugget ninebark), Spiraea japonica ‘Magic Carpet’ (Magic Carpet spirea), Weigela florida ‘Alexandra’ (Wine and Roses weigela). Different species responded differently to the CRF rates applied. For the majority of species at the final harvest, growth index, plant height, canopy area, leaf area and above-ground dry weight were greater in high vs. low CRF rates; however, different species had different optimal CRF application rates or ranges: 1.49 kg m−3 N for Hydrangea and Spiraea, 1.19 kg m−3 N for Weigela, 1.19 to 1.49 kg m−3 N for Cornus and Physocarpus, and ≤0.60 kg m−3 N for Euonymus. Based on these species-specific optimal fertilizer rates or ranges, growers can group plant species with similar fertilizer demands, thereby reducing fertilizer waste and maximizing plant production.


2011 ◽  
Vol 21 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Kimberly Moore ◽  
Scott Greenhut ◽  
Wagner Vendrame

The objective of this study was to evaluate greenhouse techniques for the production of jatropha (Jatropha curcas). Jatropha seedlings were transplanted into 1-gal containers filled with bark mix, coir, or peat-based substrate and fertilized with 0, 4.1, 5.9, or 8.3 oz/ft3 of a 15N–4.05P–9.96K controlled-release fertilizer (CRF). Plants were watered every 2, 3, or 4 days for 80 days in the greenhouse. Jatropha plants grown in peat-based substrate had greater stem diameter and shoot dry weight (SDW) than plants grown in bark mix. For each growing substrate, plants fertilized with 8.3 and 5.9 oz/ft3 of CRF had greater SDW than plants fertilized with 4.1 and 0 oz/ft3 of CRF. Similarly, for all three substrates, plants irrigated every 2 or 3 days had greater SDW than plants irrigated every 4 days. Although jatropha has been classified as a low–nutrient and water requiring plant, the results of this study suggest that increased inputs of fertilizer and water produce larger plants. Further research needs to be conducted on the benefit of larger plants from the greenhouse on subsequent oil production in the field.


Sign in / Sign up

Export Citation Format

Share Document